On Calabi's conjecture for complex surfaces with positive first Chern class.
Inventiones mathematicae, Tome 101 (1990) no. 2, pp. 101-172.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : complex Monge-Ampère-equation, existence of Kähler-Einstein metrics, compact complex surfaces, positive first Chern class
@article{IM_1990__101_2_143800,
     author = {G. Tian},
     title = {On {Calabi's} conjecture for complex surfaces with positive first {Chern} class.},
     journal = {Inventiones mathematicae},
     pages = {101--172},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {1990},
     zbl = {0716.32019},
     url = {http://geodesic.mathdoc.fr/item/IM_1990__101_2_143800/}
}
TY  - JOUR
AU  - G. Tian
TI  - On Calabi's conjecture for complex surfaces with positive first Chern class.
JO  - Inventiones mathematicae
PY  - 1990
SP  - 101
EP  - 172
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1990__101_2_143800/
ID  - IM_1990__101_2_143800
ER  - 
%0 Journal Article
%A G. Tian
%T On Calabi's conjecture for complex surfaces with positive first Chern class.
%J Inventiones mathematicae
%D 1990
%P 101-172
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1990__101_2_143800/
%F IM_1990__101_2_143800
G. Tian. On Calabi's conjecture for complex surfaces with positive first Chern class.. Inventiones mathematicae, Tome 101 (1990) no. 2, pp. 101-172. http://geodesic.mathdoc.fr/item/IM_1990__101_2_143800/