A Gauss-Bonnet theorem for motivic cohomology.
Inventiones mathematicae, Tome 101 (1990) no. 2, pp. 57-62.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : covolume, Tamagawa measures, arithmetic Euler-Poincaré characteristic, motivic cohomology, Gauß-Bonnet formula, K-theory, residue of the zeta-function, elliptic curve, Néron model
@article{IM_1990__101_2_143797,
     author = {S. Turner},
     title = {A {Gauss-Bonnet} theorem for motivic cohomology.},
     journal = {Inventiones mathematicae},
     pages = {57--62},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {1990},
     zbl = {0727.14012},
     url = {http://geodesic.mathdoc.fr/item/IM_1990__101_2_143797/}
}
TY  - JOUR
AU  - S. Turner
TI  - A Gauss-Bonnet theorem for motivic cohomology.
JO  - Inventiones mathematicae
PY  - 1990
SP  - 57
EP  - 62
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1990__101_2_143797/
ID  - IM_1990__101_2_143797
ER  - 
%0 Journal Article
%A S. Turner
%T A Gauss-Bonnet theorem for motivic cohomology.
%J Inventiones mathematicae
%D 1990
%P 57-62
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1990__101_2_143797/
%F IM_1990__101_2_143797
S. Turner. A Gauss-Bonnet theorem for motivic cohomology.. Inventiones mathematicae, Tome 101 (1990) no. 2, pp. 57-62. http://geodesic.mathdoc.fr/item/IM_1990__101_2_143797/