Formal degree and existence of stable arithmetic lattices of cuspidal representations of p-adic reductive groups.
Inventiones mathematicae, Tome 98 (1989) no. 1, pp. 549-564.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : connected reductive group, local non-archimedean field, irreducible complex representation, cuspidal representation, formal degree, discrete cocompact torsion free subgroup, G-stable arithmetic lattice
@article{IM_1989__98_1_143742,
     author = {M.F. Vigneras},
     title = {Formal degree and existence of stable arithmetic lattices of cuspidal representations of p-adic reductive groups.},
     journal = {Inventiones mathematicae},
     pages = {549--564},
     publisher = {mathdoc},
     volume = {98},
     number = {1},
     year = {1989},
     zbl = {0715.22021},
     url = {http://geodesic.mathdoc.fr/item/IM_1989__98_1_143742/}
}
TY  - JOUR
AU  - M.F. Vigneras
TI  - Formal degree and existence of stable arithmetic lattices of cuspidal representations of p-adic reductive groups.
JO  - Inventiones mathematicae
PY  - 1989
SP  - 549
EP  - 564
VL  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1989__98_1_143742/
ID  - IM_1989__98_1_143742
ER  - 
%0 Journal Article
%A M.F. Vigneras
%T Formal degree and existence of stable arithmetic lattices of cuspidal representations of p-adic reductive groups.
%J Inventiones mathematicae
%D 1989
%P 549-564
%V 98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1989__98_1_143742/
%F IM_1989__98_1_143742
M.F. Vigneras. Formal degree and existence of stable arithmetic lattices of cuspidal representations of p-adic reductive groups.. Inventiones mathematicae, Tome 98 (1989) no. 1, pp. 549-564. http://geodesic.mathdoc.fr/item/IM_1989__98_1_143742/