Formal degree and existence of stable arithmetic lattices of cuspidal representations of p-adic reductive groups.
Inventiones mathematicae, Tome 98 (1989) no. 1, pp. 549-564
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
connected reductive group, local non-archimedean field, irreducible complex representation, cuspidal representation, formal degree, discrete cocompact torsion free subgroup, G-stable arithmetic lattice
@article{IM_1989__98_1_143742,
author = {M.F. Vigneras},
title = {Formal degree and existence of stable arithmetic lattices of cuspidal representations of p-adic reductive groups.},
journal = {Inventiones mathematicae},
pages = {549--564},
year = {1989},
volume = {98},
number = {1},
zbl = {0715.22021},
url = {http://geodesic.mathdoc.fr/item/IM_1989__98_1_143742/}
}
TY - JOUR AU - M.F. Vigneras TI - Formal degree and existence of stable arithmetic lattices of cuspidal representations of p-adic reductive groups. JO - Inventiones mathematicae PY - 1989 SP - 549 EP - 564 VL - 98 IS - 1 UR - http://geodesic.mathdoc.fr/item/IM_1989__98_1_143742/ ID - IM_1989__98_1_143742 ER -
M.F. Vigneras. Formal degree and existence of stable arithmetic lattices of cuspidal representations of p-adic reductive groups.. Inventiones mathematicae, Tome 98 (1989) no. 1, pp. 549-564. http://geodesic.mathdoc.fr/item/IM_1989__98_1_143742/