The minimal number of Seifert circles equals the braid index of a link.
Inventiones mathematicae, Tome 89 (1987), pp. 347-356.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : braid index, Seifert circles of an oriented knot diagram, totally nested, knot, closed braid
@article{IM_1987__89_143484,
     author = {S. Yamada},
     title = {The minimal number of {Seifert} circles equals the braid index of a link.},
     journal = {Inventiones mathematicae},
     pages = {347--356},
     publisher = {mathdoc},
     volume = {89},
     year = {1987},
     zbl = {0634.57004},
     url = {http://geodesic.mathdoc.fr/item/IM_1987__89_143484/}
}
TY  - JOUR
AU  - S. Yamada
TI  - The minimal number of Seifert circles equals the braid index of a link.
JO  - Inventiones mathematicae
PY  - 1987
SP  - 347
EP  - 356
VL  - 89
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1987__89_143484/
ID  - IM_1987__89_143484
ER  - 
%0 Journal Article
%A S. Yamada
%T The minimal number of Seifert circles equals the braid index of a link.
%J Inventiones mathematicae
%D 1987
%P 347-356
%V 89
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1987__89_143484/
%F IM_1987__89_143484
S. Yamada. The minimal number of Seifert circles equals the braid index of a link.. Inventiones mathematicae, Tome 89 (1987), pp. 347-356. http://geodesic.mathdoc.fr/item/IM_1987__89_143484/