The smallest arithmetic hyperbolic three-orbi-fold.
Inventiones mathematicae, Tome 86 (1986), pp. 507-528.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : hyperbolic 3-space, arithmetic subgroups of PSL(2, complete, orientable, arithmetic hyperbolic 3-orbifold of minimal volume, group of units in a maximal order in the Hamiltonian quaternion algebra, Coxeter group
@article{IM_1986__86_143404,
     author = {E. Friedman and T. Chinburg},
     title = {The smallest arithmetic hyperbolic three-orbi-fold.},
     journal = {Inventiones mathematicae},
     pages = {507--528},
     publisher = {mathdoc},
     volume = {86},
     year = {1986},
     zbl = {0643.57011},
     url = {http://geodesic.mathdoc.fr/item/IM_1986__86_143404/}
}
TY  - JOUR
AU  - E. Friedman
AU  - T. Chinburg
TI  - The smallest arithmetic hyperbolic three-orbi-fold.
JO  - Inventiones mathematicae
PY  - 1986
SP  - 507
EP  - 528
VL  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1986__86_143404/
ID  - IM_1986__86_143404
ER  - 
%0 Journal Article
%A E. Friedman
%A T. Chinburg
%T The smallest arithmetic hyperbolic three-orbi-fold.
%J Inventiones mathematicae
%D 1986
%P 507-528
%V 86
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1986__86_143404/
%F IM_1986__86_143404
E. Friedman; T. Chinburg. The smallest arithmetic hyperbolic three-orbi-fold.. Inventiones mathematicae, Tome 86 (1986), pp. 507-528. http://geodesic.mathdoc.fr/item/IM_1986__86_143404/