Bounds on the number of non-rational subfields of a function field.
Inventiones mathematicae, Tome 85 (1986), pp. 185-198.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : number of non-rational subfields, number of separable subfields, number of morphisms of algebraic curves, Chow coordinates, theorem of the base, Jacobian, genus, function field, Angle theorem, de Franchis' theorem
@article{IM_1986__85_143364,
     author = {E. Kani},
     title = {Bounds on the number of non-rational subfields of a function field.},
     journal = {Inventiones mathematicae},
     pages = {185--198},
     publisher = {mathdoc},
     volume = {85},
     year = {1986},
     zbl = {0615.12017},
     url = {http://geodesic.mathdoc.fr/item/IM_1986__85_143364/}
}
TY  - JOUR
AU  - E. Kani
TI  - Bounds on the number of non-rational subfields of a function field.
JO  - Inventiones mathematicae
PY  - 1986
SP  - 185
EP  - 198
VL  - 85
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1986__85_143364/
ID  - IM_1986__85_143364
ER  - 
%0 Journal Article
%A E. Kani
%T Bounds on the number of non-rational subfields of a function field.
%J Inventiones mathematicae
%D 1986
%P 185-198
%V 85
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1986__85_143364/
%F IM_1986__85_143364
E. Kani. Bounds on the number of non-rational subfields of a function field.. Inventiones mathematicae, Tome 85 (1986), pp. 185-198. http://geodesic.mathdoc.fr/item/IM_1986__85_143364/