A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction.
Inventiones mathematicae, Tome 79 (1985), pp. 309-322.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : set of isomorphism classes of g-dimensional Abelian varieties is, finite, non-Archimedean places
@article{IM_1985__79_143198,
     author = {Yu. G. Zarhin},
     title = {A finiteness theorem for unpolarized {Abelian} varieties over number fields with prescribed places of bad reduction.},
     journal = {Inventiones mathematicae},
     pages = {309--322},
     publisher = {mathdoc},
     volume = {79},
     year = {1985},
     zbl = {0557.14024},
     url = {http://geodesic.mathdoc.fr/item/IM_1985__79_143198/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction.
JO  - Inventiones mathematicae
PY  - 1985
SP  - 309
EP  - 322
VL  - 79
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1985__79_143198/
ID  - IM_1985__79_143198
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction.
%J Inventiones mathematicae
%D 1985
%P 309-322
%V 79
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1985__79_143198/
%F IM_1985__79_143198
Yu. G. Zarhin. A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction.. Inventiones mathematicae, Tome 79 (1985), pp. 309-322. http://geodesic.mathdoc.fr/item/IM_1985__79_143198/