A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction.
Inventiones mathematicae, Tome 79 (1985), pp. 309-322
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
set of isomorphism classes of g-dimensional Abelian varieties is, finite, non-Archimedean places
@article{IM_1985__79_143198,
author = {Yu. G. Zarhin},
title = {A finiteness theorem for unpolarized {Abelian} varieties over number fields with prescribed places of bad reduction.},
journal = {Inventiones mathematicae},
pages = {309--322},
year = {1985},
volume = {79},
zbl = {0557.14024},
url = {http://geodesic.mathdoc.fr/item/IM_1985__79_143198/}
}
TY - JOUR AU - Yu. G. Zarhin TI - A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction. JO - Inventiones mathematicae PY - 1985 SP - 309 EP - 322 VL - 79 UR - http://geodesic.mathdoc.fr/item/IM_1985__79_143198/ ID - IM_1985__79_143198 ER -
Yu. G. Zarhin. A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction.. Inventiones mathematicae, Tome 79 (1985), pp. 309-322. http://geodesic.mathdoc.fr/item/IM_1985__79_143198/