Endlichkeitssätze für abelsche Varietäten über Zahlkörper.
Inventiones mathematicae, Tome 75 (1984), pp. 381-382
Voir la notice de l'article provenant de la source European Digital Mathematics Library
Mots-clés :
proof of Mordell conjecture, proof of Shafarevich conjecture, proof of Tate conjecture, modular height of abelian variety, Tate module of abelian variety, finiteness theorem for principally polarized abelian varieties
@article{IM_1984__75_251536,
author = {G. Faltings},
title = {Endlichkeitss\"atze f\"ur abelsche {Variet\"aten} \"uber {Zahlk\"orper.}},
journal = {Inventiones mathematicae},
pages = {381--382},
publisher = {mathdoc},
volume = {75},
year = {1984},
language = {de},
url = {http://geodesic.mathdoc.fr/item/IM_1984__75_251536/}
}
G. Faltings. Endlichkeitssätze für abelsche Varietäten über Zahlkörper.. Inventiones mathematicae, Tome 75 (1984), pp. 381-382. http://geodesic.mathdoc.fr/item/IM_1984__75_251536/