Irreducible Characters of Semisimple Lie Groups III. Proof of Kazhdan-Lusztig Conjecture in the Integral Case.
Inventiones mathematicae, Tome 71 (1983), pp. 381-418
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
highest weight modules, infinitesimal character, Lie algebra homology, localization theory, irreducible Harish-Chandra modules
@article{IM_1983__71_142996,
author = {David A., Jr. Vogan},
title = {Irreducible {Characters} of {Semisimple} {Lie} {Groups} {III.} {Proof} of {Kazhdan-Lusztig} {Conjecture} in the {Integral} {Case.}},
journal = {Inventiones mathematicae},
pages = {381--418},
year = {1983},
volume = {71},
zbl = {0505.22016},
url = {http://geodesic.mathdoc.fr/item/IM_1983__71_142996/}
}
TY - JOUR AU - David A., Jr. Vogan TI - Irreducible Characters of Semisimple Lie Groups III. Proof of Kazhdan-Lusztig Conjecture in the Integral Case. JO - Inventiones mathematicae PY - 1983 SP - 381 EP - 418 VL - 71 UR - http://geodesic.mathdoc.fr/item/IM_1983__71_142996/ ID - IM_1983__71_142996 ER -
David A., Jr. Vogan. Irreducible Characters of Semisimple Lie Groups III. Proof of Kazhdan-Lusztig Conjecture in the Integral Case.. Inventiones mathematicae, Tome 71 (1983), pp. 381-418. http://geodesic.mathdoc.fr/item/IM_1983__71_142996/