A New Conformal Invariant and Its Applications to the Wilmore Conjecture and the First Eigenvalue of Compact Surfaces.
Inventiones mathematicae, Tome 69 (1982), pp. 269-292.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : conformal immersion, minimal submanifold, Laplacian, mean curvature, higher total curvature
@article{IM_1982__69_142954,
     author = {Shing-Tung Yau and Peter Li},
     title = {A {New} {Conformal} {Invariant} and {Its} {Applications} to the {Wilmore} {Conjecture} and the {First} {Eigenvalue} of {Compact} {Surfaces.}},
     journal = {Inventiones mathematicae},
     pages = {269--292},
     publisher = {mathdoc},
     volume = {69},
     year = {1982},
     zbl = {0503.53042},
     url = {http://geodesic.mathdoc.fr/item/IM_1982__69_142954/}
}
TY  - JOUR
AU  - Shing-Tung Yau
AU  - Peter Li
TI  - A New Conformal Invariant and Its Applications to the Wilmore Conjecture and the First Eigenvalue of Compact Surfaces.
JO  - Inventiones mathematicae
PY  - 1982
SP  - 269
EP  - 292
VL  - 69
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1982__69_142954/
ID  - IM_1982__69_142954
ER  - 
%0 Journal Article
%A Shing-Tung Yau
%A Peter Li
%T A New Conformal Invariant and Its Applications to the Wilmore Conjecture and the First Eigenvalue of Compact Surfaces.
%J Inventiones mathematicae
%D 1982
%P 269-292
%V 69
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1982__69_142954/
%F IM_1982__69_142954
Shing-Tung Yau; Peter Li. A New Conformal Invariant and Its Applications to the Wilmore Conjecture and the First Eigenvalue of Compact Surfaces.. Inventiones mathematicae, Tome 69 (1982), pp. 269-292. http://geodesic.mathdoc.fr/item/IM_1982__69_142954/