Diffeomorphisms of the Circle and Geodesic Fields on Riemannian Surfaces of Genus One.
Inventiones mathematicae, Tome 69 (1982), pp. 229-242.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : Nash-Moser technique, Fourier series, geodesible curve field, planar optics
@article{IM_1982__69_142950,
     author = {Joel Langer and David A. Singer},
     title = {Diffeomorphisms of the {Circle} and {Geodesic} {Fields} on {Riemannian} {Surfaces} of {Genus} {One.}},
     journal = {Inventiones mathematicae},
     pages = {229--242},
     publisher = {mathdoc},
     volume = {69},
     year = {1982},
     zbl = {0508.58010},
     url = {http://geodesic.mathdoc.fr/item/IM_1982__69_142950/}
}
TY  - JOUR
AU  - Joel Langer
AU  - David A. Singer
TI  - Diffeomorphisms of the Circle and Geodesic Fields on Riemannian Surfaces of Genus One.
JO  - Inventiones mathematicae
PY  - 1982
SP  - 229
EP  - 242
VL  - 69
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1982__69_142950/
ID  - IM_1982__69_142950
ER  - 
%0 Journal Article
%A Joel Langer
%A David A. Singer
%T Diffeomorphisms of the Circle and Geodesic Fields on Riemannian Surfaces of Genus One.
%J Inventiones mathematicae
%D 1982
%P 229-242
%V 69
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1982__69_142950/
%F IM_1982__69_142950
Joel Langer; David A. Singer. Diffeomorphisms of the Circle and Geodesic Fields on Riemannian Surfaces of Genus One.. Inventiones mathematicae, Tome 69 (1982), pp. 229-242. http://geodesic.mathdoc.fr/item/IM_1982__69_142950/