On low dimensional bases of natural bundles for compact homogeneous spaces
Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1119-1137.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the bases of dimension $\le 5$ of natural bundles of compact homogeneous spaces. The description is given up to commensurability (generated by passing to some finite covering). Problems of decomposability and countability of some commensurability classes of such bases are discussed.
Keywords: homogeneous space, bundle, base of bundle, lattice in a Lie group.
@article{IM2_2024_88_6_a4,
     author = {V. V. Gorbatsevich},
     title = {On low dimensional bases of natural bundles for compact homogeneous spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1119--1137},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a4/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On low dimensional bases of natural bundles for compact homogeneous spaces
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 1119
EP  - 1137
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a4/
LA  - en
ID  - IM2_2024_88_6_a4
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On low dimensional bases of natural bundles for compact homogeneous spaces
%J Izvestiya. Mathematics 
%D 2024
%P 1119-1137
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a4/
%G en
%F IM2_2024_88_6_a4
V. V. Gorbatsevich. On low dimensional bases of natural bundles for compact homogeneous spaces. Izvestiya. Mathematics , Tome 88 (2024) no. 6, pp. 1119-1137. http://geodesic.mathdoc.fr/item/IM2_2024_88_6_a4/

[1] A. L. Onishchik, E. B. Vinberg, and V. V. Gorbatsevich, “Structure of Lie groups and Lie algebras”, Lie groups and Lie algebras III, Encyclopaedia Math. Sci., 41, Springer-Verlag, Berlin, 1994, 1–248 | MR | Zbl

[2] V. V. Gorbatsevich and A. L. Onishchik, “Lie transformation groups”, Lie groups and Lie algebras I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993, 95–229 | DOI | MR | Zbl

[3] E. B. Vinberg, V. V. Gorbatsevich, and O. V. Schwarzman, “Discrete subgroups of Lie groups”, Lie groups and Lie algebras II, Encyclopaedia Math. Sci., 21, Springer, Berlin, 2000, 1–123 | MR | Zbl

[4] V. V. Gorbatsevich, “On the fibre structure of compact homogeneous spaces”, Izv. Math., 87:6 (2023), 1161–1184 | DOI

[5] G. D. Mostow, “The extensibility of local Lie groups of transformations and groups on surfaces”, Ann. of Math. (2), 52:3 (1950), 606–636 | DOI | MR | Zbl

[6] V. V. Gorbatsevich, “On a fibration of compact homogeneous spaces”, Trans. Moscow Math. Soc., 1983:1 (1983), 129–157

[7] V. V. Gorbatsevich, “Compact homogeneous spaces with semisimple fundamental group”, Siberian Math. J., 22:1 (1981), 34–49 ; II, 27:5 (1986), 660–669 | DOI | DOI

[8] A. S. Besicovitch, “On the linear independence of fractional powers of integers”, J. London Math. Soc., 15 (1940), 3–6 | DOI | MR | Zbl

[9] A. Borel and G. Prasad, “Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups”, Inst. Hautes Études Sci. Publ. Math., 69 (1989), 119–171 | DOI | MR | Zbl

[10] V. V. Gorbatsevich, “On compact homogeneous spaces with solvable fundamental group, II”, Vopr. Teor. Grupp Gomologicheskoj Algebry, Izd-vo Uar. GU, Yaroslavl', 1982, 13–28 (Russian) | MR | Zbl

[11] G. D. Mostow, “Arithmetic subgroups of groups with radical”, Ann. of Math. (2), 93:3 (1971), 409–438 | DOI | MR | Zbl

[12] G. D. Mostow, “On the topology of homogeneous spaces of finite measure”, Sympos. Math., 16, Convegno sui gruppi topologici e gruppi di Lie, INDAM, Roma, Gennaio, 1974, Academic Press, London–New York, 1975, 375–398 | MR | Zbl