Nuttall decomposition of a~three-sheeted torus
Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 873-929.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of the Weierstrass elliptic functions, we study the problem of describing the Nuttall decomposition of a three-sheeted compact Riemann surface of genus $1$ related to an Abelian integral on the surface. This decomposition plays an important role in investigation of Hermite–Padé diagonal approximations.
Keywords: Hermite–Padé diagonal approximation, Riemann surface, elliptic function, Abelian integral, quadratic differential, complex torus.
@article{IM2_2024_88_5_a2,
     author = {S. R. Nasyrov},
     title = {Nuttall decomposition of a~three-sheeted torus},
     journal = {Izvestiya. Mathematics },
     pages = {873--929},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a2/}
}
TY  - JOUR
AU  - S. R. Nasyrov
TI  - Nuttall decomposition of a~three-sheeted torus
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 873
EP  - 929
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a2/
LA  - en
ID  - IM2_2024_88_5_a2
ER  - 
%0 Journal Article
%A S. R. Nasyrov
%T Nuttall decomposition of a~three-sheeted torus
%J Izvestiya. Mathematics 
%D 2024
%P 873-929
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a2/
%G en
%F IM2_2024_88_5_a2
S. R. Nasyrov. Nuttall decomposition of a~three-sheeted torus. Izvestiya. Mathematics , Tome 88 (2024) no. 5, pp. 873-929. http://geodesic.mathdoc.fr/item/IM2_2024_88_5_a2/

[1] H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl

[2] H. Stahl, “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2:1 (1986), 225–240 ; II, 241–251 | DOI | MR | Zbl | DOI | Zbl

[3] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[4] A. V. Komlov, “Polynomial Hermite–Padé $m$-system and reconstruction of the values of algebraic functions”, Extended abstracts fall 2019–spaces of analytic functions: approximation, interpolation, sampling, Trends Math. Res. Perspect. CRM Barc., 12, Birkhäuser/Springer, Cham, 2021, 113–121 | DOI | MR | Zbl

[5] N. R. Ikonomov and S. P. Suetin, “Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces”, Tr. Mosk. Mat. Obs., 83, no. 1, MCCME, Moscow, 2022, 37–61 (Russian)

[6] A. V. Komlov, “The polynomial Hermite–Padé $m$-system for meromorphic functions on a compact Riemann surface”, Sb. Math., 212:12 (2021), 1694–1729 | DOI

[7] A. V. Komlov, R. V. Palvelev, S. P. Suetin, and E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russian Math. Surveys, 72:4 (2017), 671–706 | DOI

[8] S. P. Suetin, “Existence of a three-sheeted Nutall surface for a certain class of infinite-valued analytic functions”, Russian Math. Surveys, 74:2 (2019), 363–365 | DOI

[9] A. I. Aptekarev and D. N. Tulyakov, “Nuttall's Abelian integral on the Riemann surface of the cube root of a polynomial of degree 3”, Izv. Math., 80:6 (2016), 997–1034 | DOI

[10] N. I. Akhiezer, Elements of the theory of elliptic functions, Transl. Math. Monogr., 79, Amer. Math. Soc., Providence, RI, 1990 | DOI | MR | Zbl

[11] F. G. Avkhadiev and L. A. Aksent'ev, “The main results on sufficient conditions for an analytic function to be schlicht”, Russian Math. Surveys, 30:4 (1975), 1–63 | DOI

[12] N. Papamichael and N. Stylianopoulos, Numerical conformal mapping. Domain decomposition and the mapping of quadrilaterals, World Sci. Publ., Hackensack, NJ, 2010 | DOI | MR | Zbl

[13] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984 | DOI | MR | Zbl

[14] A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Math., 1788, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[15] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. (N.F.), 18, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958 | DOI | MR | Zbl