The Dirichlet problem for inhomogeneous mixed-type equation with Lavrent'ev--Bitsadze operator
Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 655-677.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first boundary value problem for a mixed type equation with Lavrent'ev–Bitsadze operator in a rectangular domain is studied. We show that well-posedness of the problem depends substantially on the ratio of the sides of the rectangle from the hyperbolic part of the mixed domain. A criterion for uniqueness of a solution is established. The solution is constructed as the Fourier series. The justification of uniform convergence of the series leads to the problem of small denominators. In this regard, we give estimates for small denominators to be separated from zero, the corresponding asymptotic formulas are obtained. These estimates are applied to show the convergence of the series in the class of regular solutions of this equation. Estimates for stability of the solution with respect to given boundary functions and the right-hand side are established.
Keywords: mixed-type equation, Dirichlet problem, criterion for unique solvability, series, small denominators, stability of a solution.
Mots-clés : existence of a solution
@article{IM2_2024_88_4_a3,
     author = {K. B. Sabitov},
     title = {The {Dirichlet} problem for inhomogeneous mixed-type equation with {Lavrent'ev--Bitsadze} operator},
     journal = {Izvestiya. Mathematics },
     pages = {655--677},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a3/}
}
TY  - JOUR
AU  - K. B. Sabitov
TI  - The Dirichlet problem for inhomogeneous mixed-type equation with Lavrent'ev--Bitsadze operator
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 655
EP  - 677
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a3/
LA  - en
ID  - IM2_2024_88_4_a3
ER  - 
%0 Journal Article
%A K. B. Sabitov
%T The Dirichlet problem for inhomogeneous mixed-type equation with Lavrent'ev--Bitsadze operator
%J Izvestiya. Mathematics 
%D 2024
%P 655-677
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a3/
%G en
%F IM2_2024_88_4_a3
K. B. Sabitov. The Dirichlet problem for inhomogeneous mixed-type equation with Lavrent'ev--Bitsadze operator. Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 655-677. http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a3/

[1] F. I. Frankl', Selected papers on gas dynamics, Nauka, Moscow, 1973 (Russian) | MR

[2] B. V. Shabat, “Examples of solving the Dirichlet problem for equations of mixed type”, Dokl. Akad. Nauk SSSR, 112:3 (1957), 386–389 (Russian) | MR | Zbl

[3] A. V. Bitsadze, “Incorrectness of Dirichlet's problem for the mixed type of equations in mixed regions”, Dokl. Akad. Nauk SSSR, 122:2 (1958), 167–170 (Russian) | MR | Zbl

[4] A. P. Soldatov, “Problems of Dirichlet type for the Lavrent'ev–Bitsadze equation. I. Uniqueness theorems”, Dokl. Math., 48:2 (1994), 410–414

[5] A. P. Soldatov, “Problems of Dirichlet type for the Lavrent'ev–Bitsadze equation. II. Existence theorems”, Dokl. Math., 48:3 (1994), 433–437

[6] I. N. Vakhaniya, “On a singular problem for an equation of mixed type”, Trudy Akad. Nauk Gruz. SSR, 3 (1963), 69–80 (Russian) | MR | Zbl

[7] J. R. Cannon, “A Dirichlet problem for an equation of mixed type with a discontinuous coefficient”, Ann. Mat. Pura Appl. (4), 61 (1963), 371–377 | DOI | MR | Zbl

[8] M. M. Hačev, “Dirichlet's problem for a generalized Lavrent'ev–Bitsadze equation in a rectangular region”, Differ. Equ., 14 (1978), 96–99 | Zbl

[9] V. I. Arnol'd, “Small denominators and problems of stability of motion in classical and celestial mechanics”, Russian Math. Surveys, 18:6 (1963), 85–191 | DOI

[10] V. I. Arnol'd, “Small denominators. I. Mappings of the circumference onto itself”, Amer. Math. Soc. Transl. Ser. 2, 46, Amer. Math. Soc., Providence, RI, 1965, 213–284 | DOI

[11] V. V. Kozlov, “The frozen-in condition for a direction field, small denominators and chaotization of steady flows of a viscous liquid”, J. Appl. Math. Mech., 63:2 (1999), 229–235 | DOI | Zbl

[12] K. B. Sabitov, “Dirichlet problem for mixed-type equations in a rectangular domain”, Dokl. Math., 75:2 (2007), 193–196 | DOI

[13] A. A. Bukhshtab [Buchstab], Theory of numbers, 2nd corr. ed., Prosveshchenie, Moscow, 1966 (Russian) | MR | Zbl

[14] K. B. Sabitov, Direct and inverse problems for mixed parabolic-hyperbolic equations, Nauka, Moscow, 2016 (Russian)

[15] A. Ya. Khinchin, Continued fractions, Univ. of Chicago Press, Chicago, Ill.–London, 1964 | MR | Zbl

[16] K. B. Sabitov and R. M. Safina, “The first boundary-value problem for an equation of mixed type with a singular coefficient”, Izv. Math., 82:2 (2018), 318–350 | DOI

[17] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959 | MR | Zbl