On the positivity of direct image bundles
Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 987-1010

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we obtain an equivalent relation between the log-plurisubharmonicity of the relative Bergman kernel, the Griffiths and Nakano positivity for the direct image with the natural $L^2$ metric, by finding a converse of Berndtsson's theorem on the direct image. A converse of Berndtsson's generalization of Kiselman minimal principle is also obtained.
Keywords: $L^2$-methods, plurisubharmonic functions, positive hermitian holomorphic vector bundles, minimal principles, relative Bergman kernel.
Mots-clés : direct images
@article{IM2_2023_87_5_a8,
     author = {Zhi Li and Xiangyu Zhou},
     title = {On the positivity of direct image bundles},
     journal = {Izvestiya. Mathematics },
     pages = {987--1010},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a8/}
}
TY  - JOUR
AU  - Zhi Li
AU  - Xiangyu Zhou
TI  - On the positivity of direct image bundles
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 987
EP  - 1010
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a8/
LA  - en
ID  - IM2_2023_87_5_a8
ER  - 
%0 Journal Article
%A Zhi Li
%A Xiangyu Zhou
%T On the positivity of direct image bundles
%J Izvestiya. Mathematics 
%D 2023
%P 987-1010
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a8/
%G en
%F IM2_2023_87_5_a8
Zhi Li; Xiangyu Zhou. On the positivity of direct image bundles. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 987-1010. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a8/