Operator-norm Trotter product formula on Banach spaces
Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 947-971.

Voir la notice de l'article provenant de la source Math-Net.Ru

Proof of the operator-norm convergent Trotter product formula on a Banach space is unexpectedly elaborate and a few of known results are based on assumption that at least one of the semigroups involved into this formula is holomorphic. Here we present an example of the operator-norm convergent Trotter product formula on a Banach space, where this condition is relaxed to demand that involved semigroups are contractive.
Keywords: semigroup theory, operator-norm convergence, Banach spaces.
Mots-clés : Trotter product formula
@article{IM2_2023_87_5_a6,
     author = {V. A. Zagrebnov},
     title = {Operator-norm {Trotter} product formula on {Banach} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {947--971},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a6/}
}
TY  - JOUR
AU  - V. A. Zagrebnov
TI  - Operator-norm Trotter product formula on Banach spaces
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 947
EP  - 971
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a6/
LA  - en
ID  - IM2_2023_87_5_a6
ER  - 
%0 Journal Article
%A V. A. Zagrebnov
%T Operator-norm Trotter product formula on Banach spaces
%J Izvestiya. Mathematics 
%D 2023
%P 947-971
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a6/
%G en
%F IM2_2023_87_5_a6
V. A. Zagrebnov. Operator-norm Trotter product formula on Banach spaces. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 947-971. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a6/

[1] T. Kato, Perturbation theory for linear operators, Classics Math., Corr. printing of the 2nd ed., Springer-Verlag, Berlin, 1995 | DOI

[2] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000 | DOI | MR | Zbl

[3] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, 6th ed., Springer-Verlag, Berlin–New York, 1980 | MR | Zbl

[4] H. F. Trotter, “On the product of semi-groups of operators”, Proc. Amer. Math. Soc., 10 (1959), 545–551 | DOI | MR | Zbl

[5] V. Cachia and V. A. Zagrebnov, “Operator-norm convergence of the Trotter product formula for holomorphic semigroups”, J. Operator Theory, 46:1 (2001), 199–213 | MR | Zbl

[6] Dzh. L. Rogava, “Error bounds for Trotter-type formulas for self-adjoint operators”, Funct. Anal. Appl., 27:3 (1993), 217–219 | DOI

[7] H. Neidhardt and V. A. Zagrebnov, “On error estimates for the Trotter–Kato product formula”, Lett. Math. Phys., 44:3 (1998), 169–186 | DOI | MR | Zbl

[8] H. Neidhardt and V. A. Zagrebnov, “Fractional powers of self-adjoint operators and Trotter–Kato product formula”, Integral Equations Operator Theory, 35:2 (1999), 209–231 | DOI | MR | Zbl

[9] V. A. Zagrebnov, “Notes on the Chernoff product formula”, J. Funct. Anal., 279:7 (2020), 108696 | DOI | MR | Zbl

[10] T. Ichinose and H. Tamura, “Error estimate in operator norm for Trotter–Kato product formula”, Integral Equations Operator Theory, 27:2 (1997), 195–207 | DOI | MR | Zbl

[11] H. Neidhardt, A. Stephan, and V. A. Zagrebnov, “Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems”, Publ. Res. Inst. Math. Sci., 56:1 (2020), 83–135 | DOI | MR | Zbl

[12] J. S. Howland, “Stationary scattering theory for time-dependent Hamiltonians”, Math. Ann., 207 (1974), 315–335 | DOI | MR | Zbl

[13] D. E. Evans, “Time dependent perturbations and scattering of strongly continuous groups on Banach spaces”, Math. Ann., 221:3 (1976), 275–290 | DOI | MR | Zbl

[14] H. Neidhardt, Integration of Evolutionsgleichungen mit Hilfe von Evolutionshalbgruppen, Dissertation, AdW der DDR, Berlin, 1979

[15] H. Neidhardt, “On abstract linear evolution equations. I”, Math. Nachr., 103 (1981), 283–298 | DOI | MR | Zbl

[16] J. L. Walsh and W. E. Sewell, “Note on degree of approximation to an integral by Riemann sums”, Amer. Math. Monthly, 44:3 (1937), 155–160 | DOI | MR | Zbl

[17] H. Tamura, “A remark on operator-norm convergence of Trotter–Kato product formula”, Integral Equations Operator Theory, 37:3 (2000), 350–356 | DOI | MR | Zbl

[18] H. Tanabe, Equations of evolution, Transl. from the Japanese original (Iwanami, Tokyo 1975), Monographs and Studies in Mathematics, 6, Pitman (Advanced Publishing Program), Boston, MA–London, 1979 | MR | Zbl

[19] Ya. A. Butko, “The method of Chernoff approximation”, SOTA 2018: Semigroups of operators – theory and applications (Kazimierz Dolny 2018), Springer Proc. Math. Stat., 325, Springer, Cham, 2020, 19–46 | DOI | MR | Zbl

[20] H. Neidhardt, A. Stephan, and V. A. Zagrebnov, “Operator-norm convergence of the Trotter product formula on Hilbert and Banach spaces: a short survey”, Current research in nonlinear analysis, Springer Optim. Appl., 135, Springer, Cham, 2018, 229–247 | DOI | MR | Zbl

[21] H. Neidhardt, A. Stephan, and V. A. Zagrebnov, “Remarks on the operator-norm convergence of the Trotter product formula”, Integral Equations Operator Theory, 90:2 (2018), 15 | DOI | MR | Zbl