Symmetries and conservation laws of the Liouville equation
Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 941-946.

Voir la notice de l'article provenant de la source Math-Net.Ru

Symmetries and conservation laws of the Liouville equation are studied in the frames of the algebra-geometrical approach to partial differential equations.
Keywords: symmetry, conservation law, evolution derivation, evolution Lie bracket, variational derivative, first integral.
Mots-clés : Liouville equation
@article{IM2_2023_87_5_a5,
     author = {V. V. Zharinov},
     title = {Symmetries and conservation laws of the {Liouville} equation},
     journal = {Izvestiya. Mathematics },
     pages = {941--946},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a5/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Symmetries and conservation laws of the Liouville equation
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 941
EP  - 946
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a5/
LA  - en
ID  - IM2_2023_87_5_a5
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Symmetries and conservation laws of the Liouville equation
%J Izvestiya. Mathematics 
%D 2023
%P 941-946
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a5/
%G en
%F IM2_2023_87_5_a5
V. V. Zharinov. Symmetries and conservation laws of the Liouville equation. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 941-946. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a5/

[1] I. V. Volovich, Time irreversibility problem and functional formulation of classical mechanics, arXiv: 0907.2445v1

[2] I. V. Volovich, “Bogoliubov equations and functional mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1128–1135 | DOI

[3] I. V. Volovich, “Functional stochastic classical mechanics”, $p$-Adic Numbers Ultrametric Anal. Appl., 7:1 (2015), 56–70 | DOI | MR | Zbl

[4] R. Courant and D. Hilbert, Methods of mathematical physics, v. II, Wiley Classics Library, Partial differential equations, Reprint of the 1962 original, John Wiley, New York, 1989 | DOI | MR | Zbl

[5] P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer-Verlag, New York, 1986 ; 2nd ed., 1993 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Symmetries and conservation laws for differential equations of mathematical physics, Transl. Math. Monogr., 182, eds. I. S. Krasil'shchik and A. M. Vinogradov, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl

[7] V. V. Zharinov, Lecture notes on geometrical aspects of partial differential equations, Ser. Soviet East European Math., 9, World Sci. Publ., River Edge, NJ, 1992 | DOI | MR | Zbl

[8] V. V. Zharinov, “Conservation laws of evolution systems”, Theoret. and Math. Phys., 68:2 (1986), 745–751 | DOI

[9] V. V. Zharinov, Dynamics of wave packets in the functional mechanics, arXiv: 2203.12028v1