Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_5_a5, author = {V. V. Zharinov}, title = {Symmetries and conservation laws of the {Liouville} equation}, journal = {Izvestiya. Mathematics }, pages = {941--946}, publisher = {mathdoc}, volume = {87}, number = {5}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a5/} }
V. V. Zharinov. Symmetries and conservation laws of the Liouville equation. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 941-946. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a5/
[1] I. V. Volovich, Time irreversibility problem and functional formulation of classical mechanics, arXiv: 0907.2445v1
[2] I. V. Volovich, “Bogoliubov equations and functional mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1128–1135 | DOI
[3] I. V. Volovich, “Functional stochastic classical mechanics”, $p$-Adic Numbers Ultrametric Anal. Appl., 7:1 (2015), 56–70 | DOI | MR | Zbl
[4] R. Courant and D. Hilbert, Methods of mathematical physics, v. II, Wiley Classics Library, Partial differential equations, Reprint of the 1962 original, John Wiley, New York, 1989 | DOI | MR | Zbl
[5] P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer-Verlag, New York, 1986 ; 2nd ed., 1993 | DOI | MR | Zbl | DOI | MR | Zbl
[6] Symmetries and conservation laws for differential equations of mathematical physics, Transl. Math. Monogr., 182, eds. I. S. Krasil'shchik and A. M. Vinogradov, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl
[7] V. V. Zharinov, Lecture notes on geometrical aspects of partial differential equations, Ser. Soviet East European Math., 9, World Sci. Publ., River Edge, NJ, 1992 | DOI | MR | Zbl
[8] V. V. Zharinov, “Conservation laws of evolution systems”, Theoret. and Math. Phys., 68:2 (1986), 745–751 | DOI
[9] V. V. Zharinov, Dynamics of wave packets in the functional mechanics, arXiv: 2203.12028v1