On stabilization of solutions of second-order semilinear parabolic equations on closed manifolds
Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 817-834
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with problems of existence, uniqueness, and stabilization of weak solutions
of one class of semilinear second-order parabolic differential equations on closed manifolds.
These equations are inhomogeneous analogues of the
Kolmogorov–Petrovskii–Piskunov–Fisher equation,
and have significant applied and mathematical value.
Keywords:
the Kolmogorov–Petrovskii–Piskunov–Fisher equation,
second-order parabolic equation, semilinear equation on manifold, weak solution, stabilization.
@article{IM2_2023_87_4_a5,
author = {D. V. Tunitsky},
title = {On stabilization of solutions of second-order semilinear parabolic equations on closed manifolds},
journal = {Izvestiya. Mathematics },
pages = {817--834},
publisher = {mathdoc},
volume = {87},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a5/}
}
TY - JOUR AU - D. V. Tunitsky TI - On stabilization of solutions of second-order semilinear parabolic equations on closed manifolds JO - Izvestiya. Mathematics PY - 2023 SP - 817 EP - 834 VL - 87 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a5/ LA - en ID - IM2_2023_87_4_a5 ER -
D. V. Tunitsky. On stabilization of solutions of second-order semilinear parabolic equations on closed manifolds. Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 817-834. http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a5/