The boundary behavior of $\mathcal Q_{p,q}$-homeomorphisms
Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 683-725.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article studies systematically the boundary correspondence problem for $\mathcal Q_{p,q}$-homeomorphisms. The presented example demonstrates a deformation of the Euclidean boundary with the weight function degenerating on the boundary.
Keywords: Sobolev space, composition operator, capacity of a condenser, capacity metric, capacity boundary.
Mots-clés : quasiconformal analysis
@article{IM2_2023_87_4_a1,
     author = {S. K. Vodopyanov and A. O. Molchanova},
     title = {The boundary behavior of $\mathcal Q_{p,q}$-homeomorphisms},
     journal = {Izvestiya. Mathematics },
     pages = {683--725},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a1/}
}
TY  - JOUR
AU  - S. K. Vodopyanov
AU  - A. O. Molchanova
TI  - The boundary behavior of $\mathcal Q_{p,q}$-homeomorphisms
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 683
EP  - 725
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a1/
LA  - en
ID  - IM2_2023_87_4_a1
ER  - 
%0 Journal Article
%A S. K. Vodopyanov
%A A. O. Molchanova
%T The boundary behavior of $\mathcal Q_{p,q}$-homeomorphisms
%J Izvestiya. Mathematics 
%D 2023
%P 683-725
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a1/
%G en
%F IM2_2023_87_4_a1
S. K. Vodopyanov; A. O. Molchanova. The boundary behavior of $\mathcal Q_{p,q}$-homeomorphisms. Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 683-725. http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a1/

[1] C. Carathéodory, “Über die Begrenzung einfach zusammenhängender Gebiete”, Math. Ann., 73:3 (1913), 323–370 | DOI | MR | Zbl

[2] W. F. Osgood and E. H. Taylor, “Conformal transformations on the boundaries of their regions of definition”, Trans. Amer. Math. Soc., 14:2 (1913), 277–298 | DOI | MR | Zbl

[3] G. D. Suvorov, “On the prime ends of a sequence of plane regions converging to a nucleus”, Mat. sb., 33(75):1 (1953), 73–100 ; English transl. Amer. Math. Soc. Transl. Ser. 2, 1, Amer. Math. Soc., Providence, RI, 1955, 67–93 | MR | Zbl | DOI | MR | Zbl

[4] D. B. A. Epstein, “Prime ends”, Proc. London Math. Soc. (3), 42:3 (1981), 385–414 | DOI | MR | Zbl

[5] V. A. Zorich, “Correspondence of the boundaries in $Q$-quasiconformal mapping of a sphere”, Dokl. Akad. Nauk SSSR, 145:6 (1962), 1209–1212 ; English transl. Soviet Math. Dokl., 3 (1962), 1183–1186 | MR | Zbl

[6] V. A. Zorič, “Determination of boundary elements by means of sections”, Dokl. Akad. Nauk SSSR, 164:4 (1965), 736–739 ; English transl. Soviet Math. Dokl., 6 (1965), 1284–1287 | MR | Zbl

[7] A. Björn, J. Björn and N. Shanmugalingam, “The {D}irichlet problem for $p$-harmonic functions with respect to the Mazurkiewicz boundary, and new capacities”, J. Differential Equations, 259:7 (2015), 3078–3114 | DOI | MR | Zbl

[8] J. Milnor, Dynamics in one complex variable, Ann. of Math. Stud., 160, 3rd ed., Princeton Univ. Press, Princeton, NJ, 2006 | DOI | MR | Zbl

[9] L. Rempe, “On prime ends and local connectivity”, Bull. Lond. Math. Soc., 40:5 (2008), 817–826 | DOI | MR | Zbl

[10] G. D. Suvorov, Prime ends and sequences of plane mappings, Naukova Dumka, Kiev, 1986 (Russian) | MR

[11] T. Adamowicz, A. Björn, J. Björn, N. Shanmugalingam, “Prime ends for domains in metric spaces”, Adv. Math., 238 (2013), 459–505 | DOI | MR | Zbl

[12] T. Adamowicz, “Prime ends in metric spaces and quasiconformal-type mappings”, Anal. Math. Phys., 9:4 (2019), 1941–1975 | DOI | MR | Zbl

[13] D. A. Kovtonyuk and V. I. Ryazanov, “Prime ends and Orlicz–Sobolev classes”, Algebra i Analiz, 27:5 (2015), 81–116 ; English transl. St. Petersburg Math. J., 27:5 (2016), 765–788 | MR | Zbl | DOI

[14] T. Kuusalo, “Quasiconformal mappings without boundary extensions”, Ann. Acad. Sci. Fenn. Ser. A I Math., 10 (1985), 331–338 | DOI | MR | Zbl

[15] E. C. Schlesinger, “Conformal invariants and prime ends”, Amer. J. Math., 80 (1958), 83–102 | DOI | MR | Zbl

[16] R. Näkki, Boundary behaviour of quasiconformal mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I, 484, Suomalainen Tiedeakademia, Helsinki, 1970 | DOI | MR | Zbl

[17] R. Näkki, “Prime ends and quasiconformal mappings”, J. Anal. Math., 35 (1979), 13–40 | DOI | MR | Zbl

[18] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971 | DOI | MR | Zbl

[19] M. Vuorinen, Exceptional sets and boundary behaviour of quasiregular mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 11, Suomalainen Tiedeakatemia, Helsinki, 1976 | MR | Zbl

[20] M. Vuorinen, “On the boundary behaviour of locally $K$-quasiconformal mappings in space”, Ann. Acad. Sci. Fenn. Ser. A I Math., 5:1 (1980), 79–95 | DOI | MR | Zbl

[21] O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009 | DOI | MR | Zbl

[22] E. A. Sevost'yanov, “Boundary behaviour and equicontinuity for families of mappings in terms of prime ends”, Algebra i Analiz, 30:6 (2018), 97–146 ; English transl. St. Petersburg Math. J., 30:6 (2019), 973–1005 | MR | Zbl | DOI

[23] M. Cristea, “Boundary behaviour of the mappings satisfying generalized inverse modular inequalities”, Complex Var. Elliptic Equ., 60:4 (2015), 437–469 | DOI | MR | Zbl

[24] S. K. Vodop'yanov, “On a boundary correspondence for quasiconformal mappings of three-dimensional domains”, Sibirsk. Mat. Zh., 16:3 (1975), 630–633 ; English transl. Siberian Math. J., 16:3 (1975), 487–490 | MR | Zbl | DOI

[25] V. M. Gol'dšteĭn, S. K. Vodop'janov, “Metric completion of a domain by using a conformal capacity invariant under quasi-conformal mappings”, Dokl. Akad. Nauk SSSR, 238:5 (1978), 1040–1042 ; English transl. Soviet Math. Dokl., 19:1 (1978), 158–161 | MR | Zbl

[26] S. K. Vodop'yanov, V. M. Gol'dshtein, and Yu. G. Reshetnyak, “On geometric properties of functions with generalized first derivatives”, Russian Math. Surveys, 34:1(205) (1979), 17–65 ; English transl. 34:1 (1979), 19–74 | MR | Zbl | DOI

[27] V. I. Kruglikov, “Prime ends of spatial domains with variable boundaries”, Dokl. Akad. Nauk SSSR, 297:5 (1987), 1047–1050 ; English transl. Soviet Math. Dokl., 36:3 (1988), 565–568 | MR | Zbl

[28] S. K. Vodop'yanov, “Regularity of mappings inverse to Sobolev mappings”, Mat. Sb., 203:10 (2012), 3–32 ; English transl. Sb. Math., 203:10 (2012), 1383–1410 | DOI | MR | Zbl | DOI

[29] S. K. Vodopyanov, “Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms”, Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 21–25 ; English transl. Dokl. Math., 102:2 (2020), 371–375 | DOI | Zbl | DOI | MR

[30] S. K. Vodop'yanov, “On the analytic and geometric properties of mappings in the theory of $\mathscr Q_{q,p}$-homeomorphisms”, Mat. Zametki, 108:6 (2020), 925–929 ; English transl. Math. Notes, 108:6 (2020), 889–894 | DOI | MR | Zbl | DOI

[31] S. K. Vodopyanov Sibirsk. Mat. Zh., 61:6 (2020), 1257–1299 ; English transl. Siberian Math. J., 61:6 (2020), 1002–1038 | DOI | MR | Zbl | DOI

[32] S. K. Vodopyanov and A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. RAN. Ser. Mat., 85:5 (2021), 58–109 ; English transl. Izv. Math., 85:5 (2021), 883–931 | DOI | MR | Zbl | DOI

[33] S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Sibirsk. Mat. Zh., 62:6 (2021), 1252–1270 ; English transl. Siberian Math. J., 62:6 (2021), 1010–1025 | DOI | Zbl | DOI | MR

[34] S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Mat. Sb., 213:9 (2022), 3–33 ; English transl. Sb. Math., 213:9 (2022), 1157–1186 | DOI

[35] S. K. Vodopyanov, “Basics of the quasiconformal analysis of a two-index scale of spatial mappings”, Sibirsk. Mat. Zh., 59:5 (2018), 1020–1056 ; ­Ј«. ЇҐа.: Siberian Math. J., 59:5 (2018), 805–834 | DOI | MR | Zbl | DOI

[36] S. K. Vodopyanov, “Differentiability of mappings of the Sobolev space $W_{n-1}^1$ with conditions on the distortion function”, Sibirsk. Mat. Zh., 59:6 (2018), 1240–1267 ; English transl. Siberian Math. J., 59:6 (2018), 983–1005 | DOI | MR | Zbl | DOI

[37] A. D. Ukhlov, “On mappings generating the embeddings of Sobolev spaces”, Sibirsk. Mat. Zh., 34:1 (1993), 185–192 ; English transl. Siberian Math. J., 34:1 (1993), 165–171 | MR | Zbl | DOI

[38] S. K. Vodop'yanov and A. D. Ukhlov, “Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups”, Sibirsk. Mat. Zh., 39:4 (1998), 776–795 ; English transl. Siberian Math. J., 39:4 (1998), 665–682 | MR | Zbl | DOI

[39] S. K. Vodop'yanov and A. D. Ukhlov, “Superposition operators in Sobolev spaces”, Izv. Vyssh. Uchebn. Zaved. Mat, 2002, no. 10, 11–33 ; English transl. Russian Math. (Iz. VUZ), 46:10 (2002), 9–31 | MR | Zbl

[40] S. L. Sobolev, Applications of functional analysis in mathematical physics, Izdat. Leningrad. Gos. Univ., Leningrad, 1950 ; English transl. Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, RI, 1963 | MR | Zbl | MR

[41] V. G. Maz'ja, Sobolev spaces, Izdat. Leningrad. Gos. Univ., Leningrad, 1985 ; English transl. Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985 ; Sobolev spaces. With applications to elliptic partial differential equations, Grundlehren Math. Wiss., 342, 2nd rev. and augm. ed., Springer, Heidelberg, 2011 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[42] G. D. Mostow, Inst. Hautes Études Sci. Publ. Math., 34 (1968), 53–104 ; Russian transl. “Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms”, Matematika, 16:5 (1972), 105–157 | DOI | MR | Zbl | Zbl

[43] F. W. Gehring, “Lipschitz mappings and $p$-capacity of rings in $n$-space”, Advances in the theory of Riemann surfaces (Stony Brook, NY 1969), Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, NJ, 1971, 175–193 | DOI | MR | Zbl

[44] Yu. G. Reshetnyak, Space mappings with bounded distortion, Nauka, Novosibirsk, 1982 ; English transl. Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | DOI | MR | Zbl

[45] F. W. Gehring and J. Väisälä, “The coefficients of quasiconformality of domains in space”, Acta Math., 114 (1965), 1–70 | DOI | MR | Zbl

[46] H. M. Reimann, “Über harmonische Kapazität und quasikonforme Abbildungen im Raum”, Comment. Math. Helv., 44 (1969), 284–307 | MR | Zbl

[47] J. Lelong-Ferrand, “Étude d'une classe d'applications liées à des homomorphismes d'algébres de fonctions, et généralisant les quasi-conformes”, Duke Math. J., 40 (1973), 163–186 | DOI | MR | Zbl

[48] S. K. Vodopyanov, “Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds”, Mat. sb., 210:1 (2019), 63–112 ; English transl. Sb. Math., 210:1 (2019), 59–104 | DOI | MR | Zbl | DOI

[49] A. Molchanova and S. Vodopyanov, “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Partial Differential Equations, 59:1 (2020), 17 | DOI | MR | Zbl

[50] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1993 | MR | Zbl

[51] T. Rado and P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Grundlehren Math. Wiss., LXXV, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955 | DOI | MR | Zbl

[52] M. de Guzmán, Differentiation of integrals in $\mathbb{R}^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975 ; Russian transl. Mir, Moscow, 1978 | DOI | MR | Zbl | MR

[53] S. K. Vodop'yanov and A. D. Ukhlov, “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I”, Mat. Tr., 6:2 (2003), 14–65 ; English transl. Siberian Adv. Math., 14:4 (2004), 78–125 | MR | Zbl | MR | Zbl

[54] S. K. Vodopyanov, “On Poletsky-type modulus inequalities for some classes of mappings”, Vladikavkaz. Mat. Zh., 24:4 (2022), 58–69 | DOI | MR | Zbl

[55] D. V. Isangulova and S. K. Vodopyanov, “Coercive estimates and integral representation formulas on Carnot groups”, Eurasian Math. J., 1:3 (2010), 58–96 | MR | Zbl

[56] Yu. G. Reshetnyak, “The concept of capacity in the theory of functions with generalized derivatives”, Sibirsk. Mat. Zh., 10:5 (1969), 1109–1138 ; English transl. Siberian Math. J., 10:5 (1969), 818–842 | MR | Zbl | DOI

[57] G. Ye. Shilov, Mathematical analysis. A special course, Fizmatlit, Moscow, 1961 ; English transl. Pergamon Press, Oxford–New York–Paris, 1965 | MR | Zbl | MR | Zbl

[58] F. Hausdorff, Set theory, Transl. from the German, 2nd ed., Chelsea Publishing Co., New York, 1962 | MR | Zbl

[59] R. R. Salimov and E. A. Sevost'yanov, “$ACL$ and differentiability of open discrete ring $(p, Q)$-mappings”, Mat. Stud., 35:1 (2011), 28–36 | MR | Zbl

[60] V. I. Ryazanov and E. A. Sevost'yanov, “Equicontinuity of mean quasiconformal mappings”, Sibirsk. Mat. Zh., 52:3 (2011), 665–679 ; English transl. Siberian Math. J., 52:3 (2011), 524–536 | MR | Zbl | DOI

[61] R. R. Salimov, “ACL and differentiability of a generalization of quasi-conformal maps”, Izv. RAN. Ser. Mat., 72:5 (2008), 141–148 ; English transl. Izv. Math., 72:5 (2008), 977–984 | DOI | MR | Zbl | DOI

[62] R. Salimov, “$ACL$ and differentiability of $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 295–301 | MR | Zbl

[63] R. R. Salimov and E. A. Sevost'yanov, “The theory of shell-based $Q$-mappings in geometric function theory”, Mat. sb., 201:6 (2010), 131–158 ; English transl. Sb. Math., 201:6 (2010), 909–934 | DOI | MR | DOI | Zbl

[64] E. Sevost'yanov, S. Skvortsov, On behavior of homeomorphisms with inverse modulus conditions, 2018, arXiv: 1801.01808v9

[65] R. R. Salimov and E. A. Sevost'yanov, “On local properties of spatial generalized quasi-isometries”, Mat. Zametki, 101:4 (2017), 594–610 ; English transl. Math. Notes, 101:4 (2017), 704–717 | DOI | MR | Zbl | DOI

[66] R. Salimov, “On $Q$-homeomorphisms with respect to $p$-modulus”, Ann. Univ. Buchar. Math. Ser., 2(LX):2 (2011), 207–213 | MR | Zbl

[67] M. V. Tryamkin, “Boundary correspondence for homeomorphisms with weighted bounded $(p,q)$-distortion”, Mat. Zametki, 102:4 (2017), 632–636 ; English transl. Math. Notes, 102:4 (2017), 591–595 | DOI | MR | Zbl | DOI

[68] J. Hesse, “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13:1-2 (1975), 131–144 | DOI | MR | Zbl

[69] V. A. Shlyk, “The equality between $p$-capacity and $p$-modulus”, Sibirsk. Mat. Zh., 34:6 (1993), 216–221 ; English transl. Siberian Math. J., 34:6 (1993), 1196–1200 | MR | Zbl | DOI

[70] H. Aikawa and M. Ohtsuka, “Extremal length of vector measures”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 61–88 | MR | Zbl

[71] V. Gol'dshtein and A. Ukhlov, Boundary values of functions of Dirichlet spases $L^1_2$ on capacitary boundaries, 2014, arXiv: 1405.3472

[72] E. Afanas'eva, V. Ryazanov, R. Salimov, and E. Sevost'yanov, “On boundary extension of Sobolev classes with critical exponent by prime ends”, Lobachevskii J. Math., 41:11 (2020), 2091–2102 | DOI | MR | Zbl