@article{IM2_2023_87_3_a7,
author = {N. A. Tyurin},
title = {Special {Bohr{\textendash}Sommerfeld} geometry: variations},
journal = {Izvestiya. Mathematics},
pages = {595--615},
year = {2023},
volume = {87},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a7/}
}
N. A. Tyurin. Special Bohr–Sommerfeld geometry: variations. Izvestiya. Mathematics, Tome 87 (2023) no. 3, pp. 595-615. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a7/
[1] N. A. Tyurin, “Special Bohr–Sommerfeld Lagrangian submanifolds”, Izv. Ross. Akad. Nauk Ser. Mat., 80:6 (2016), 274–293 ; English transl. Izv. Math., 80:6 (2016), 1257–1274 | DOI | MR | Zbl | DOI
[2] N. A. Tyurin, “Special Bohr–Sommerfeld Lagrangian submanifolds of algebraic varieties”, Izv. Ross. Akad. Nauk Ser. Mat., 82:3 (2018), 170–191 ; English transl. Izv. Math., 82:3 (2018), 612–631 | DOI | MR | Zbl | DOI
[3] N. A. Tyurin, “The moduli space of $D$-exact Lagrangian submanifolds”, Sibirsk. Mat. Zh., 60:4 (2019), 907–921 ; English transl. Siberian Math. J., 60:4 (2019), 709–719 | DOI | MR | Zbl | DOI
[4] N. A. Tyurin, “On the Kählerization of the moduli space of Bohr–Sommerfeld Lagrangian submanifolds”, Mat. Zametki, 107:6 (2020), 945–947 ; English transl. Math. Notes, 107:6 (2020), 1038–1039 | DOI | MR | Zbl | DOI
[5] A. L. Gorodentsev and A. N. Tyurin, “Abelian Lagrangian algebraic geometry”, Izv. Ross. Akad. Nauk Ser. Mat., 65:3 (2001), 15–50 ; English transl. Izv. Math., 65:3 (2001), 437–467 | DOI | MR | Zbl | DOI
[6] N. A. Tyurin, “Dynamical correspondence in algebraic Lagrangian geometry”, Izv. Ross. Akad. Nauk Ser. Mat., 66:3 (2002), 175–196 ; English transl. Izv. Math., 66:3 (2002), 611–629 | DOI | MR | Zbl | DOI
[7] K. Cieliebak and Y. Eliashberg, From Stein to Weinstein and back. Symplectic geometry of affine complex manifolds, Amer. Math. Soc. Colloq. Publ., 59, Amer. Math. Soc., Providence, RI, 2012 | DOI | MR | Zbl
[8] Ya. Eliashberg, “Weinstein manifolds revisited”, Modern geometry: a celebration of the work of Simon Donaldson, Proc. Sympos. Pure Math., 99, Amer. Math. Soc., Providence, RI, 2018, 59–82 | DOI | MR | Zbl