Special Bohr--Sommerfeld geometry: variations
Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 595-615.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work continues investigations of special Bohr–Sommerfeld geometry for compact symplectic manifolds. By using natural deformation parameters we circumvent the difficulties involved in the definition of moduli spaces of special Bohr–Sommerfeld cycles for compact simply connected algebraic varieties. As a byproduct, we present some ideas of how our constructions can be exploited in the studies of Weinstein structures and Eliashberg conjectures.
Keywords: algebraic variety, Lagrangian submanifold, Bohr–Sommerfeld condition, Weinstein structure, Eliashberg conjecture.
@article{IM2_2023_87_3_a7,
     author = {N. A. Tyurin},
     title = {Special {Bohr--Sommerfeld} geometry: variations},
     journal = {Izvestiya. Mathematics },
     pages = {595--615},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a7/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Special Bohr--Sommerfeld geometry: variations
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 595
EP  - 615
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a7/
LA  - en
ID  - IM2_2023_87_3_a7
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Special Bohr--Sommerfeld geometry: variations
%J Izvestiya. Mathematics 
%D 2023
%P 595-615
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a7/
%G en
%F IM2_2023_87_3_a7
N. A. Tyurin. Special Bohr--Sommerfeld geometry: variations. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 595-615. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a7/

[1] N. A. Tyurin, “Special Bohr–Sommerfeld Lagrangian submanifolds”, Izv. Ross. Akad. Nauk Ser. Mat., 80:6 (2016), 274–293 ; English transl. Izv. Math., 80:6 (2016), 1257–1274 | DOI | MR | Zbl | DOI

[2] N. A. Tyurin, “Special Bohr–Sommerfeld Lagrangian submanifolds of algebraic varieties”, Izv. Ross. Akad. Nauk Ser. Mat., 82:3 (2018), 170–191 ; English transl. Izv. Math., 82:3 (2018), 612–631 | DOI | MR | Zbl | DOI

[3] N. A. Tyurin, “The moduli space of $D$-exact Lagrangian submanifolds”, Sibirsk. Mat. Zh., 60:4 (2019), 907–921 ; English transl. Siberian Math. J., 60:4 (2019), 709–719 | DOI | MR | Zbl | DOI

[4] N. A. Tyurin, “On the Kählerization of the moduli space of Bohr–Sommerfeld Lagrangian submanifolds”, Mat. Zametki, 107:6 (2020), 945–947 ; English transl. Math. Notes, 107:6 (2020), 1038–1039 | DOI | MR | Zbl | DOI

[5] A. L. Gorodentsev and A. N. Tyurin, “Abelian Lagrangian algebraic geometry”, Izv. Ross. Akad. Nauk Ser. Mat., 65:3 (2001), 15–50 ; English transl. Izv. Math., 65:3 (2001), 437–467 | DOI | MR | Zbl | DOI

[6] N. A. Tyurin, “Dynamical correspondence in algebraic Lagrangian geometry”, Izv. Ross. Akad. Nauk Ser. Mat., 66:3 (2002), 175–196 ; English transl. Izv. Math., 66:3 (2002), 611–629 | DOI | MR | Zbl | DOI

[7] K. Cieliebak and Y. Eliashberg, From Stein to Weinstein and back. Symplectic geometry of affine complex manifolds, Amer. Math. Soc. Colloq. Publ., 59, Amer. Math. Soc., Providence, RI, 2012 | DOI | MR | Zbl

[8] Ya. Eliashberg, “Weinstein manifolds revisited”, Modern geometry: a celebration of the work of Simon Donaldson, Proc. Sympos. Pure Math., 99, Amer. Math. Soc., Providence, RI, 2018, 59–82 | DOI | MR | Zbl