On higher-dimensional del~Pezzo varieties
Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 488-561

Voir la notice de l'article provenant de la source Math-Net.Ru

We study del Pezzo varieties, higher-dimensional analogues of del Pezzo surfaces. In particular, we introduce ADE classification of del Pezzo varieties, show that in type $\mathrm A$ the dimension of non-conical del Pezzo varieties is bounded by $12 - d - r$, where $d$ is the degree and $r$ is the rank of the class group, and classify maximal del Pezzo varieties.
Keywords: Fano variety, del Pezzo variety, terminal singularity.
@article{IM2_2023_87_3_a4,
     author = {A. G. Kuznetsov and Yu. G. Prokhorov},
     title = {On higher-dimensional {del~Pezzo} varieties},
     journal = {Izvestiya. Mathematics },
     pages = {488--561},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a4/}
}
TY  - JOUR
AU  - A. G. Kuznetsov
AU  - Yu. G. Prokhorov
TI  - On higher-dimensional del~Pezzo varieties
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 488
EP  - 561
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a4/
LA  - en
ID  - IM2_2023_87_3_a4
ER  - 
%0 Journal Article
%A A. G. Kuznetsov
%A Yu. G. Prokhorov
%T On higher-dimensional del~Pezzo varieties
%J Izvestiya. Mathematics 
%D 2023
%P 488-561
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a4/
%G en
%F IM2_2023_87_3_a4
A. G. Kuznetsov; Yu. G. Prokhorov. On higher-dimensional del~Pezzo varieties. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 488-561. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a4/