On higher-dimensional del~Pezzo varieties
Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 488-561.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study del Pezzo varieties, higher-dimensional analogues of del Pezzo surfaces. In particular, we introduce ADE classification of del Pezzo varieties, show that in type $\mathrm A$ the dimension of non-conical del Pezzo varieties is bounded by $12 - d - r$, where $d$ is the degree and $r$ is the rank of the class group, and classify maximal del Pezzo varieties.
Keywords: Fano variety, del Pezzo variety, terminal singularity.
@article{IM2_2023_87_3_a4,
     author = {A. G. Kuznetsov and Yu. G. Prokhorov},
     title = {On higher-dimensional {del~Pezzo} varieties},
     journal = {Izvestiya. Mathematics },
     pages = {488--561},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a4/}
}
TY  - JOUR
AU  - A. G. Kuznetsov
AU  - Yu. G. Prokhorov
TI  - On higher-dimensional del~Pezzo varieties
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 488
EP  - 561
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a4/
LA  - en
ID  - IM2_2023_87_3_a4
ER  - 
%0 Journal Article
%A A. G. Kuznetsov
%A Yu. G. Prokhorov
%T On higher-dimensional del~Pezzo varieties
%J Izvestiya. Mathematics 
%D 2023
%P 488-561
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a4/
%G en
%F IM2_2023_87_3_a4
A. G. Kuznetsov; Yu. G. Prokhorov. On higher-dimensional del~Pezzo varieties. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 488-561. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a4/

[1] V. A. Iskovskih, “Fano 3-folds. I”, Izv. Akad. Nauk SSSR Ser. Mat., 41:3 (1977), 516–562 ; English transl. Math. USSR-Izv., 11:3 (1977), 485–527 | MR | Zbl | DOI

[2] T. Fujita, “On the structure of polarized manifolds with total deficiency one. I”, J. Math. Soc. Japan, 32:4 (1980), 709–725 ; II, 33:3 (1981), 415–434 ; III, 36:1 (1984), 75–89 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[3] P. Jahnke and T. Peternell, “Almost del Pezzo manifolds”, Adv. Geom., 8:3 (2008), 387–411 | DOI | MR | Zbl

[4] M. Andreatta and L. Tasin, “Fano–Mori contractions of high length on projective varieties with terminal singularities”, Bull. Lond. Math. Soc., 46:1 (2014), 185–196 | DOI | MR | Zbl

[5] Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418 | DOI | MR | Zbl

[6] A. Kuznetsov, “Homological projective duality”, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 157–220 | DOI | MR | Zbl

[7] T. Beckmann and P. Belmans, Homological projective duality for the Segre cubic (to appear) , arXiv: 2202.08601

[8] H. Ahmadinezhad, I. Cheltsov, J. Park, and C. Shramov, Double Veronese cones with $28$ nodes (to appear) , arXiv: 1910.10533

[9] Kil-Ho Shin, “$3$-dimensional Fano varieties with canonical singularities”, Tokyo J. Math., 12:2 (1989), 375–385 | DOI | MR | Zbl

[10] T. Fujita, “Projective varieties of $\Delta$-genus one”, Algebraic and topological theories (Kinosaki 1984), Kinokuniya, Tokyo, 1986, 149–175 | MR | Zbl

[11] T. Fujita, “On singular del Pezzo varieties”, Algebraic geometry (L'Aquila 1988), Lecture Notes in Math., 1417, Springer, Berlin, 1990, 117–128 | DOI | MR | Zbl

[12] V. A. Alexeev, “Theorems about good divisors on log {F}ano varieties (case of index $r>n-2$)”, Algebraic geometry (Chicago, IL 1989), Lecture Notes in Math., 1479, Springer, Berlin, 1991, 1–9 | DOI | MR | Zbl

[13] F. Hidaka and K. Watanabe, “Normal Gorenstein surfaces with ample anti-canonical divisor”, Tokyo J. Math., 4:2 (1981), 319–330 | DOI | MR | Zbl

[14] T. Fujita, “Defining equations for certain types of polarized varieties”, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, 165–173 | DOI | MR | Zbl

[15] J. Kollár and Sh. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998 | DOI | MR | Zbl

[16] I. V. Dolgachev and V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Boston, MA, 2009, 443–548 | DOI | MR | Zbl

[17] Yu. G. Prokhorov, “On birational involutions of $\mathbb P^3$”, Izv. Ross. Akad. Nauk Ser. Mat., 77:3 (2013), 199–222 ; English transl. Izv. Math., 77:3 (2013), 627–648 | DOI | MR | Zbl | DOI

[18] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468 | DOI | MR | Zbl

[19] Yu. G. Prokhorov and V. V. Shokurov, “Towards the second main theorem on complements”, J. Algebraic Geom., 18:1 (2009), 151–199 | DOI | MR | Zbl

[20] Yi Hu and S. Keel, “Mori dream spaces and GIT”, Michigan Math. J., 48 (2000), 331–348 | DOI | MR | Zbl

[21] S. Ishii, Introduction to singularities, Springer, Tokyo, 2014 | DOI | MR | Zbl

[22] E. Yasinsky, “Subgroups of odd order in the real plane Cremona group”, J. Algebra, 461 (2016), 87–120 | DOI | MR | Zbl

[23] V. A. Iskovskikh and Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247 | MR | Zbl

[24] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254:2 (1980), 121–176 | DOI | MR | Zbl

[25] Y. Kawamata, K. Matsuda, and K. Matsuki, “Introduction to the minimal model problem”, Algebraic geometry (Sendai 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | DOI | MR | Zbl

[26] G. V. Ravindra and V. Srinivas, “The Grothendieck–Lefschetz theorem for normal projective varieties”, J. Algebraic Geom., 15:3 (2006), 563–590 | DOI | MR | Zbl

[27] A. Kuznetsov, Derived categories of families of Fano threefolds, arXiv: 2202.12345

[28] C. Liedtke, “Morphisms to Brauer–Severi varieties, with applications to del Pezzo surfaces”, Geometry over nonclosed fields, Simons Symp., Springer, Cham, 2017, 157–196 | DOI | MR | Zbl

[29] H. A. Hamm and Lê Dũng Tráng, “Un théorème de Zariski du type de Lefschetz”, Ann. Sci. École Norm. Sup. (4), 6:4 (1973), 317–355 | DOI | MR | Zbl

[30] A. G. Kuznetsov, “On linear sections of the spinor tenfold. I”, Izv. Ross. Akad. Nauk Ser. Mat., 82:4 (2018), 53–114 ; English transl. Izv. Math., 82:4 (2018), 694–751 | DOI | MR | Zbl | DOI

[31] A. Kuznetsov and Yu. Prokhorov, “Rationality of Mukai varieties over non-closed fields”, Rationality of varieties, Progr. Math., 342, Birkhäuser/Springer, Cham, 2021, 249–290 | DOI | MR | Zbl

[32] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, Nauka, Moscow, 1972 (Russian) ; English transl. North-Holland Math. Library, 4, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., New York, 1974 | MR | Zbl | MR | Zbl

[33] A. Kuznetsov and Yu. Prokhorov, “Rationality over non-closed fields of Fano threefolds with higher geometric Picard rank”, J. Inst. Math. Jussieu, published online by Cambridge University Press 05/AUG/2022 | DOI

[34] O. Debarre and A. Kuznetsov, “Gushel–Mukai varieties: classification and birationalities”, Algebr. Geom., 5:1 (2018), 15–76 | DOI | MR | Zbl

[35] A. Kuznetsov and Yu. Prokhorov, “Rationality of Fano threefolds over non-closed fields”, Amer. J. Math., 145:2 (2023), 335–411 | DOI

[36] J. Piontkowski and A. Van de Ven, “The automorphism group of linear sections of the Grassmannians $\mathbb{G}(1,N)$”, Doc. Math., 4 (1999), 623–664 | DOI | MR | Zbl

[37] J. G. Semple and L. Roth, Introduction to algebraic geometry, Oxford Sci. Publ., Reprint of the 1949 original, The Clarendon Press, Oxford Univ. Press, New York, 1985 | MR | Zbl

[38] H. F. Baker, “Segre's ten nodal cubic primal in space of four dimensions and del Pezzo's surface in five dimensions”, J. London Math. Soc., 6:3 (1931), 176–185 | DOI | MR | Zbl

[39] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012 | DOI | MR | Zbl

[40] B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Math., 1637, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl

[41] I. Cheltsov, A. Kuznetsov, and K. Shramov, “Coble fourfold, {$\mathfrak{S}_6$}-invariant quartic threefolds, and Wiman–Edge sextics”, Algebra Number Theory, 14:1 (2020), 213–274 | DOI | MR | Zbl