Hardy type inequalities for one weight function and their applications
Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 362-388

Voir la notice de l'article provenant de la source Math-Net.Ru

New one-dimensional Hardy-type inequalities for a weight function of the form $x^\alpha(2-x)^\beta$ for positive and negative values of the parameters $\alpha$ and $\beta$ are put forward. In some cases, the constants in the resulting one-dimensional inequalities are sharp. We use one-dimensional inequalities with additional terms to establish multivariate inequalities with weight functions depending on the mean distance function or the distance function from the boundary of a domain. Spatial inequalities are proved in arbitrary domains, in Davies-regular domains, in domains satisfying the cone condition, in $\lambda$-close to convex domains, and in convex domains. The constant in the additional term in the spatial inequalities depends on the volume or the diameter of the domain. As a consequence of these multivariate inequalities, estimates for the first eigenvalue of the Laplacian under the Dirichlet boundary conditions in various classes of domains are established. We also use one-dimensional inequalities to obtain new classes of meromorphic univalent functions in simply connected domains. Namely, Nehari–Pokornii type sufficient conditions for univalence are obtained.
Keywords: Hardy inequality, inner radius, diameter of a domain, univalent function.
Mots-clés : volume of a domain
@article{IM2_2023_87_2_a5,
     author = {R. G. Nasibullin},
     title = {Hardy type inequalities for one weight function and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {362--388},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a5/}
}
TY  - JOUR
AU  - R. G. Nasibullin
TI  - Hardy type inequalities for one weight function and their applications
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 362
EP  - 388
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a5/
LA  - en
ID  - IM2_2023_87_2_a5
ER  - 
%0 Journal Article
%A R. G. Nasibullin
%T Hardy type inequalities for one weight function and their applications
%J Izvestiya. Mathematics 
%D 2023
%P 362-388
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a5/
%G en
%F IM2_2023_87_2_a5
R. G. Nasibullin. Hardy type inequalities for one weight function and their applications. Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 362-388. http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a5/