Hardy type inequalities for one weight function and their applications
Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 362-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

New one-dimensional Hardy-type inequalities for a weight function of the form $x^\alpha(2-x)^\beta$ for positive and negative values of the parameters $\alpha$ and $\beta$ are put forward. In some cases, the constants in the resulting one-dimensional inequalities are sharp. We use one-dimensional inequalities with additional terms to establish multivariate inequalities with weight functions depending on the mean distance function or the distance function from the boundary of a domain. Spatial inequalities are proved in arbitrary domains, in Davies-regular domains, in domains satisfying the cone condition, in $\lambda$-close to convex domains, and in convex domains. The constant in the additional term in the spatial inequalities depends on the volume or the diameter of the domain. As a consequence of these multivariate inequalities, estimates for the first eigenvalue of the Laplacian under the Dirichlet boundary conditions in various classes of domains are established. We also use one-dimensional inequalities to obtain new classes of meromorphic univalent functions in simply connected domains. Namely, Nehari–Pokornii type sufficient conditions for univalence are obtained.
Keywords: Hardy inequality, inner radius, diameter of a domain, univalent function.
Mots-clés : volume of a domain
@article{IM2_2023_87_2_a5,
     author = {R. G. Nasibullin},
     title = {Hardy type inequalities for one weight function and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {362--388},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a5/}
}
TY  - JOUR
AU  - R. G. Nasibullin
TI  - Hardy type inequalities for one weight function and their applications
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 362
EP  - 388
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a5/
LA  - en
ID  - IM2_2023_87_2_a5
ER  - 
%0 Journal Article
%A R. G. Nasibullin
%T Hardy type inequalities for one weight function and their applications
%J Izvestiya. Mathematics 
%D 2023
%P 362-388
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a5/
%G en
%F IM2_2023_87_2_a5
R. G. Nasibullin. Hardy type inequalities for one weight function and their applications. Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 362-388. http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a5/

[1] A. A. Balinsky, W. D. Evans, and R. T. Lewis, The analysis and geometry of Hardy's inequality, Universitext, Springer, Cham, 2015 | DOI | MR | Zbl

[2] F. G. Avkhadiev, “Properties and applications of the distance functions on open sets of the Euclidean space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 4, 87–92 ; English transl. Russian Math. (Iz. VUZ), 64:4 (2020), 75–79 | DOI | MR | Zbl | DOI

[3] H. Brezis and M. Marcus, “Hardy's inequalities revisited”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1-2 (1997), 217–237 | MR | Zbl

[4] T. Matskewich and P. E. Sobolevskii, “The best possible constant in generalized Hardy's inequality for convex domain in ${R}^n$”, Nonlinear Anal., 28:9 (1997), 1601–1610 | DOI | MR | Zbl

[5] F. G. Avkhadiev, “A geometric description of domains whose Hardy constant is equal to $1/4$”, Izv. Ross. Akad. Nauk Ser. Mat., 78:5 (2014), 3–26 ; English transl. Izv. Math., 78:5 (2014), 855–876 | DOI | MR | Zbl | DOI

[6] M. Marcus, V. J. Mizel, and Y. Pinchover, “On the best constant for Hardy's inequality in $\mathbb{R}^n$”, Trans. Amer. Math. Soc., 350:8 (1998), 3237–3255 | DOI | MR | Zbl

[7] E. B. Davies, “The Hardy constant”, Quart. J. Math. Oxford Ser. (2), 46:4 (1995), 417–431 | DOI | MR | Zbl

[8] C. Bandle, Isoperimetric inequalities and applications, Monogr. Stud. Math., 7, Pitman (Advanced Publishing Program), Boston, MA–London, 1980 | MR | Zbl

[9] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and A. Laptev, “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548 | DOI | MR | Zbl

[10] W. D. Evans and R. T. Lewis, “Hardy and Rellich inequalities with remainders”, J. Math. Inequal., 1:4 (2007), 473–490 | DOI | MR | Zbl

[11] F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl

[12] F. G. Avkhadiev, “Hardy-type inequalities on planar and spatial open sets”, Function spaces, approximation theory, and nonlinear analysis, Collected papers, Trudy Mat. Inst. Steklova, 255, Nauka, MAIK “Nauka/Inteperiodika”, Moscow, 2006, 8–18 ; English transl. Proc. Steklov Inst. Math., 255:1 (2006), 2–12 | MR | Zbl | DOI

[13] S. Filippas, V. Maz'ya, and A. Tertikas, “On a question of Brezis and Marcus”, Calc. Var. Partial Differential Equations, 25:4 (2006), 491–501 | DOI | MR | Zbl

[14] F. G. Avkhadiev and K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, ZAMM Z. Angew. Math. Mech., 87:8-9 (2007), 632–642 | DOI | MR | Zbl

[15] F. G. Avkhadiev and K.-J. Wirths, “Sharp Hardy-type inequalities with Lamb's constant”, Bull. Belg. Math. Soc. Simon Stevin, 18:4 (2011), 723–736 | DOI | MR | Zbl

[16] F. G. Avkhadiev and R. G. Nasibullin, “Hardy-type inequalities in arbitrary domains with finite inner radius”, Sibirsk. Mat. Zh., 55:2 (2014), 239–250 ; English transl. Siberian Math. J., 55:2 (2014), 191–200 | MR | Zbl | DOI

[17] J. Hersch, “Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum”, Z. Angew. Math. Phys., 11 (1960), 387–413 | DOI | MR | Zbl

[18] V. I. Levin, “Notes on inequalities. II. On a class of integral inequalities”, Mat. Sb., 4(46):2 (1938), 309–324 (Russian) | Zbl

[19] V. G. Maz'ja, Sobolev spaces, Izd. Leningr. Univ., Leningrad, 1985 (Russian) ; English transl. Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985 | MR | Zbl | DOI | MR | Zbl

[20] J. Tidblom, “A geometrical version of Hardy's inequality for $\mathring W^{1,p}(\Omega)$”, Proc. Amer. Math. Soc., 132:8 (2004), 2265–2271 | DOI | MR | Zbl

[21] Z. Nehari, “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl

[22] F. G. Avkhadiev, L. A. Aksent'ev, and A. M. Elizarov, “Sufficient conditions for the finite-valence of analytic functions and their applications”, Itogi Nauki i Tekhniki ‘Ґа. Њ ⥬. ­ «., 25, VINITI, Moscow, 1987, 3–121 ; English transl. J. Soviet Math., 49:1 (1990), 715–799 | MR | Zbl | DOI

[23] F. G. Avkhadiev and L. A. Aksent'ev, “Achievements and problems in sufficient conditions for finite-valence of analytic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 10, 3–16 ; English transl. Russian Math. (Iz. VUZ), 30:10 (1986), 1–20 | MR | Zbl

[24] F. G. Avkhadiev, “Some sufficient conditions for the univalence of analytic functions”, Trudy Sem. Kraev. Zadacham, 9, Kazan University, Kazan, 1972, 3–11 (Russian) | MR | Zbl

[25] F. G. Avkhadiev, Conformal mappings and boundary value problems, 2nd revised and augmented ed., Kazan University, Kazan, 2019 (Russian) | MR | Zbl

[26] S. Yamashita, “Inequalities for the Schwarzian derivative”, Indiana Univ. Math. J., 28:1 (1979), 131–135 | DOI | MR | Zbl

[27] G. N. Watson, A treatise on the theory of Bessel functions, Reprint of the 2nd ed., Cambridge Univ. Press, Cambridge, 1966 ; Russian transl. of 1st ed. v. 1, 2, Inostr. Lit., Moscow, 1949 | MR | Zbl

[28] P. R. Beesack, K. M. Das, “Extensions of Opial's inequality”, Pacific J. Math., 26:2 (1968), 215–232 | DOI | MR | Zbl

[29] R. C. Brown, D. B. Hinton, “Opial's inequality and oscillation of 2nd order equations”, Proc. Amer. Math. Soc., 125:4 (1997), 1123–1129 | DOI | MR | Zbl

[30] R. Nasibullin, “A geometrical version of Hardy–Rellich type inequalities”, Math. Slovaca, 69:4 (2019), 785–800 | DOI | MR | Zbl

[31] E. B. Davies, Spectral theory and differential operators, Cambridge Stud. Adv. Math., 42, Cambridge Univ.Press., Cambridge, 1995 | DOI | MR | Zbl

[32] A. M. Tukhvatullina, “Hardy type inequalities for a special family of non-convex domains”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 153, no. 1, Kazan University, Kazan, 2011, 211–220 (Russian) | MR | Zbl

[33] R. G. Nasibullin and A. M. Tukhvatullina, “Hardy type inequalities with logarithmic and power weights for a special family of non-convex domains”, Ufimsk. Mat. Zh., 5:2 (2013), 43–55 ; English transl. Ufa Math. J., 5:2 (2013), 43–55 | MR | DOI | MR

[34] F. G. Avkhadiev, “Hardy–Rellich integral inequalities in domains satisfying the exterior sphere condition”, Algebra i Analiz, 30:2 (2018), 18–44 ; English transl. St. Petersburg Math. J., 30:2 (2019), 161–179 | MR | Zbl | DOI

[35] V. V. Pokornyĭ, “On some sufficient conditions for univalence”, Dokl. Akad. Nauk SSSR, 79:5 (1951), 743–746 (Russian) | MR | Zbl

[36] R. G. Nasibullin, “Hardy-type inequalities for the Jacobi weight with applications”, Sibirsk. Mat. Zh., 63:6 (2022), 1313–1333 ; English transl. Siberian Math. J., 63:6 (2022), 1121–1139 | Zbl | DOI