Categories of weight modules for unrolled restricted quantum groups at roots of unity
Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1204-1224

Voir la notice de l'article provenant de la source Math-Net.Ru

Motivated by connections to the singlet vertex operator algebra in the $\mathfrak{g}=\mathfrak{sl}_2$ case, we study the unrolled restricted quantum group $\overline{U}_q^{\,H}(\mathfrak{g})$ for any finite dimensional complex simple Lie algebra $\mathfrak{g}$ at arbitrary roots of unity with a focus on its category of weight modules. We show that the braid group action naturally extends to the unrolled quantum groups and that the category of weight modules is a generically semi-simple ribbon category (previously known only for odd roots) with trivial Müger center and self-dual projective modules.
Keywords: quantum groups, unrolled quantum groups, representation theory.
@article{IM2_2022_86_6_a8,
     author = {M. Rupert},
     title = {Categories of weight modules for unrolled restricted quantum groups at roots of unity},
     journal = {Izvestiya. Mathematics },
     pages = {1204--1224},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a8/}
}
TY  - JOUR
AU  - M. Rupert
TI  - Categories of weight modules for unrolled restricted quantum groups at roots of unity
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1204
EP  - 1224
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a8/
LA  - en
ID  - IM2_2022_86_6_a8
ER  - 
%0 Journal Article
%A M. Rupert
%T Categories of weight modules for unrolled restricted quantum groups at roots of unity
%J Izvestiya. Mathematics 
%D 2022
%P 1204-1224
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a8/
%G en
%F IM2_2022_86_6_a8
M. Rupert. Categories of weight modules for unrolled restricted quantum groups at roots of unity. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1204-1224. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a8/