Arithmetic of certain $\ell$-extensions ramified at three places. III
Izvestiya. Mathematics, Tome 86 (2022) no. 6, pp. 1143-1161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\ell$ be a regular odd prime, $K$ the $\ell$ th cyclotomic field and $K=k(\sqrt[\ell]{a}\,)$, where $a$ is a positive integer. Under the assumption that there are exactly three places ramified in the extension $K_\infty/k_\infty$, we study the $\ell$-component of the class group of the field $K$. We prove that in the case $\ell>3$ there always is an unramified extension $\mathcal{N}/K$ such that $G(\mathcal{N}/K)\cong (\mathbb Z/\ell\mathbb Z)^2$ and all places over $\ell$ split completely in the extension $\mathcal{N}/K$. In the case $\ell=3$ we give a complete description of the situation. Some other results are obtained.
Keywords: Iwasawa theory, Tate module, extensions with restricted ramification.
@article{IM2_2022_86_6_a5,
     author = {L. V. Kuz'min},
     title = {Arithmetic of certain~$\ell$-extensions ramified at three {places.~III}},
     journal = {Izvestiya. Mathematics},
     pages = {1143--1161},
     year = {2022},
     volume = {86},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a5/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - Arithmetic of certain $\ell$-extensions ramified at three places. III
JO  - Izvestiya. Mathematics
PY  - 2022
SP  - 1143
EP  - 1161
VL  - 86
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a5/
LA  - en
ID  - IM2_2022_86_6_a5
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T Arithmetic of certain $\ell$-extensions ramified at three places. III
%J Izvestiya. Mathematics
%D 2022
%P 1143-1161
%V 86
%N 6
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a5/
%G en
%F IM2_2022_86_6_a5
L. V. Kuz'min. Arithmetic of certain $\ell$-extensions ramified at three places. III. Izvestiya. Mathematics, Tome 86 (2022) no. 6, pp. 1143-1161. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a5/

[1] L. V. Kuz'min, “Arithmetic of certain $\ell$-extensions ramified at three places”, Algebra, number theory, and algebraic geometry, Collected papers. Dedicated to the memory of Academician Igor Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 307, Steklov Mathematical Institute of RAS, Moscow, 2019, 78–99 ; English transl. Proc. Steklov Inst. Math., 307 (2019), 65–84 | DOI | MR | Zbl | DOI

[2] L. V. Kuz'min, “Arithmetic of certain $\ell$-extensions ramified at three places. II”, Izv. Ross. Akad. Nauk Ser. Mat., 85:5 (2021), 132–151 ; English transl. Izv. Math., 85:5 (2021), 953–971 | DOI | MR | Zbl | DOI

[3] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, NJ, 1956 ; Russian transl. Inostr. Lit., Moscow, 1960 | MR | Zbl | MR