One advance in the proof of the conjecture on meromorphic solutions of Briot--Bouquet type equations
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 1020-1030.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study entire solutions (solutions which are entire functions) of differential equations of the form $P(y,y^{(n)})=0$, where $P$ is a polynomial with complex coefficients, $n$ is a natural number. We show that, under some constraints on $P$, all entire solutions of such equations are either polynomials, or functions of the form $e^{-L\beta z}Q(e^{\beta z})$, where $L$ is a nonnegative integer, $\beta$ is a complex number, and $Q$ is a polynomial with complex coefficients. This verifies the well-known A. E. Eremenko's conjecture on meromorphic solutions of autonomous Briot–Bouquet type equations for entire solutions in the nondegenerate case.
Keywords: algebraic differential equation, entire function, meromorphic function.
Mots-clés : Briot–Bouquet type equation
@article{IM2_2022_86_5_a9,
     author = {A. Ya. Yanchenko},
     title = {One advance in the proof of the conjecture on meromorphic solutions of  {Briot--Bouquet} type equations},
     journal = {Izvestiya. Mathematics },
     pages = {1020--1030},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a9/}
}
TY  - JOUR
AU  - A. Ya. Yanchenko
TI  - One advance in the proof of the conjecture on meromorphic solutions of  Briot--Bouquet type equations
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1020
EP  - 1030
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a9/
LA  - en
ID  - IM2_2022_86_5_a9
ER  - 
%0 Journal Article
%A A. Ya. Yanchenko
%T One advance in the proof of the conjecture on meromorphic solutions of  Briot--Bouquet type equations
%J Izvestiya. Mathematics 
%D 2022
%P 1020-1030
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a9/
%G en
%F IM2_2022_86_5_a9
A. Ya. Yanchenko. One advance in the proof of the conjecture on meromorphic solutions of  Briot--Bouquet type equations. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 1020-1030. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a9/

[1] E. Picard, “Sur une propriété des fonctions uniformes d'une variable et sur une classe d'équations différentielles”, C. R. Acad. Sci. Paris, 91 (1880), 1058–1061 | Zbl

[2] E. Hille, Ordinary differential equations in the complex domain, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York–London–Sydney, 1976 | MR | Zbl

[3] S. B. Bank and R. P. Kaufman, “On Briot–Bouquet differential equations and a question of Einar Hille”, Math. Z., 177:4 (1981), 549–559 | DOI | MR | Zbl

[4] A. È. Eremenko, “Meromorphic solutions of algebraic differential equations”, Uspekhi Mat. Nauk, 37:4(226) (1982), 53–82 ; English transl. Russian Math. Surveys, 37:4 (1982), 61–95 | MR | Zbl | DOI

[5] A. Eh. Eremenko, “Meromorphic solutions of equations of the Briot-Bouquet type”, Teoriya Funktsiǐ, Funktsional'nyǐ Analiz i ikh Prilozheniya, 38, Osnova, Khar'kov, 1982, 48–56 (Russian) | MR | Zbl

[6] A. E. Eremenko, Liangwen Liao, and Tuen Wai Ng, “Meromorphic solutions of higher order Briot–Bouquet differential equations”, Math. Proc. Cambridge Philos. Soc., 146:1 (2009), 197–206 | DOI | MR | Zbl

[7] B. Ja. Levin, Distribution of zeros of entire functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956 ; English transl. Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, RI, 1964 | MR | Zbl | MR | Zbl

[8] W. K. Hayman, “The growth of solutions of algebraic differential equations”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 7:2 (1996), 67–73 | MR | Zbl

[9] H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, Ergeb. Math. Grenzgeb. (N.F.), 8, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955 | MR | Zbl

[10] A. B. Shidlovskii, Transcendental numbers, Nauka, Moscow, 1987 ; English transl. De Gruyter Stud. Math., 12, Walter de Gruyter, Berlin, 1989 | MR | Zbl | DOI | MR | Zbl

[11] V. A. Podkopaeva and A. Ya. Yanchenko, “Finite-order entire solutions of a class of algebraic differential equations”, Differ. Uravn., 56:10 (2020), 1318–1322 ; English transl. Differ. Equ., 56:10 (2020), 1285–1289 | DOI | MR | Zbl | DOI

[12] E. Hille, “Higher order Briot–Bouquet differential equations”, Ark. Mat., 16:1-2 (1978), 271–286 | DOI | MR | Zbl