One advance in the proof of the conjecture on meromorphic solutions of Briot--Bouquet type equations
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 1020-1030
Voir la notice de l'article provenant de la source Math-Net.Ru
We study entire solutions (solutions which are entire functions) of differential equations of the form
$P(y,y^{(n)})=0$, where $P$ is a polynomial with complex coefficients, $n$ is a natural number.
We show that, under some constraints on $P$, all entire solutions of such equations are either
polynomials, or functions of the form $e^{-L\beta z}Q(e^{\beta z})$, where $L$ is a nonnegative integer, $\beta$ is
a complex number, and $Q$ is a polynomial with complex coefficients.
This verifies the well-known A. E. Eremenko's conjecture on meromorphic solutions of autonomous
Briot–Bouquet type equations for entire solutions in the nondegenerate case.
Keywords:
algebraic differential equation, entire function, meromorphic function.
Mots-clés : Briot–Bouquet type equation
Mots-clés : Briot–Bouquet type equation
@article{IM2_2022_86_5_a9,
author = {A. Ya. Yanchenko},
title = {One advance in the proof of the conjecture on meromorphic solutions of {Briot--Bouquet} type equations},
journal = {Izvestiya. Mathematics },
pages = {1020--1030},
publisher = {mathdoc},
volume = {86},
number = {5},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a9/}
}
TY - JOUR AU - A. Ya. Yanchenko TI - One advance in the proof of the conjecture on meromorphic solutions of Briot--Bouquet type equations JO - Izvestiya. Mathematics PY - 2022 SP - 1020 EP - 1030 VL - 86 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a9/ LA - en ID - IM2_2022_86_5_a9 ER -
A. Ya. Yanchenko. One advance in the proof of the conjecture on meromorphic solutions of Briot--Bouquet type equations. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 1020-1030. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a9/