On summable solutions of a class of nonlinear integral equations on the whole line
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 980-991.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a class of nonlinear integral equations with a noncompact monotone Hammerstein–Nemytskii operator on the whole real line. This class of equations is widely used in various fields of natural science. In particular, such equations arise in mathematical biology and in the theory of radiative transfer. A constructive existence theorem for a nonnegative nontrivial summable and bounded solution is proved. We also study the asymptotic behavior of the solution at $\pm\infty$. At the end of the paper, specific examples of the indicated equations are given, that satisfy all the conditions of the proved existence theorem. In an important particular case, it is possible to prove a uniqueness theorem in a certain class of essentially bounded functions.
Keywords: Hammerstein–Nemytskii operator, Diekmann function, iterations, monotonicity, summability.
@article{IM2_2022_86_5_a7,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {On summable solutions of a class of nonlinear integral equations on the whole line},
     journal = {Izvestiya. Mathematics },
     pages = {980--991},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a7/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - On summable solutions of a class of nonlinear integral equations on the whole line
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 980
EP  - 991
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a7/
LA  - en
ID  - IM2_2022_86_5_a7
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T On summable solutions of a class of nonlinear integral equations on the whole line
%J Izvestiya. Mathematics 
%D 2022
%P 980-991
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a7/
%G en
%F IM2_2022_86_5_a7
Kh. A. Khachatryan; H. S. Petrosyan. On summable solutions of a class of nonlinear integral equations on the whole line. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 980-991. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a7/

[1] O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl

[2] A. G. Sergeev and Kh. A. Khachatryan, “On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic”, Tr. Mosk. Mat. Obs., 80, no. 1, MCCME, Moscow, 2019, 113–131 ; English transl. Trans. Moscow Math. Soc., 80 (2019), 95–111 | Zbl | DOI | MR

[3] O. Diekmann, “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Differential Equations, 33:1 (1979), 58–73 | DOI | MR | Zbl

[4] A. Kh. Khachatryan and Kh. A. Khachatryan, “On the solvability of some nonlinear integral equations in problems of epidemic spread”, Mathematical physics and applications, Collected papers. In commemoration of the 95th anniversary of Academician Vasilii Sergeevich Vladimirov, Trudy Mat. Inst. Steklova, 306, Њ€ЂЌ, Moscow, 2019, 287–303 ; English transl. Proc. Steklov Inst. Math., 306 (2019), 271–287 | DOI | MR | Zbl | DOI

[5] A. Kh. Khachatryana, Kh. A. Khachatryan, and H. S. Petrosyan, “Asymptotic behavior of a solution for one class of nonlinear integro-differential equations in the income distribution problem”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 27:1 (2021), 188–206 | DOI | MR

[6] J. D. Sargan, “The distribution of wealth”, Econometrica, 25:4 (1957), 568–590 | DOI | MR | Zbl

[7] N. B. Engibaryan, “On a problem in nonlinear radiative transfer”, Astrofizika, 2:1 (1966), 31–36 ; English transl. Astrophysics, 2:1 (1966), 12–14 (https://arar.sci.am/dlibra/publication/27739/edition/24782/content) | DOI

[8] Kh. A. Khachatryan and H. S. Petrosyan, “On the construction of an integrable solution to one class of nonlinear integral equations of Hammerstein–Nemytskii type on the whole axis”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 26:2 (2020), 278–287 | DOI | MR

[9] Kh. A. Khachatryan, “On positive solutions of one class of nonlinear integral equations of Hammerstein–Nemytskii type on the whole axis”, Tr. Mosk. Mat. Obs., 75, no. 1, MCCME, Moscow, 2014, 1–14 ; English transl. Trans. Moscow Math. Soc., 75 (2014), 1–12 | MR | Zbl | DOI

[10] Kh. A. Khachatryan, “On solution of a system of Hammerstein–Nemitskii type nonlinear integral equations on whole axis”, Tr. Inst. Mat., 21:2 (2013), 154–161 (Russian)

[11] Kh. A. Khachatryan and H. S. Petrosyan, “On the solvability of a class of nonlinear Hammerstein–Stieltjes integral equations on the whole line”, Trudy Mat. Inst. Steklova, 308, Differential equations and dynamical systems (2020), 253–264 ; English transl. Proc. Steklov Inst. Math., 308 (2020), 238–249 | DOI | MR | Zbl | DOI

[12] A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis, 5th ed., Nauka, Moscow, 1981 ; English transl. of 1st ed. v. I, II, Graylock Press, Albany, NY, 1957, 1961 | MR | Zbl | MR | MR | Zbl

[13] M. A. Krasnosel'skii, P. P. Zabreyko, E. I. Pustylnik, and P. E. Sobolevski, Integral operators in spaces of summable functions, Nauka, Moscow, 1966 ; English transl. Monographs Textbooks Mech. Solids Fluids: Mech. Anal., Noordhoff International Publishing, Leiden, 1976 | MR | Zbl | MR | Zbl