Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_5_a7, author = {Kh. A. Khachatryan and H. S. Petrosyan}, title = {On summable solutions of a class of nonlinear integral equations on the whole line}, journal = {Izvestiya. Mathematics }, pages = {980--991}, publisher = {mathdoc}, volume = {86}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a7/} }
TY - JOUR AU - Kh. A. Khachatryan AU - H. S. Petrosyan TI - On summable solutions of a class of nonlinear integral equations on the whole line JO - Izvestiya. Mathematics PY - 2022 SP - 980 EP - 991 VL - 86 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a7/ LA - en ID - IM2_2022_86_5_a7 ER -
Kh. A. Khachatryan; H. S. Petrosyan. On summable solutions of a class of nonlinear integral equations on the whole line. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 980-991. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a7/
[1] O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl
[2] A. G. Sergeev and Kh. A. Khachatryan, “On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic”, Tr. Mosk. Mat. Obs., 80, no. 1, MCCME, Moscow, 2019, 113–131 ; English transl. Trans. Moscow Math. Soc., 80 (2019), 95–111 | Zbl | DOI | MR
[3] O. Diekmann, “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Differential Equations, 33:1 (1979), 58–73 | DOI | MR | Zbl
[4] A. Kh. Khachatryan and Kh. A. Khachatryan, “On the solvability of some nonlinear integral equations in problems of epidemic spread”, Mathematical physics and applications, Collected papers. In commemoration of the 95th anniversary of Academician Vasilii Sergeevich Vladimirov, Trudy Mat. Inst. Steklova, 306, Њ€ЂЌ, Moscow, 2019, 287–303 ; English transl. Proc. Steklov Inst. Math., 306 (2019), 271–287 | DOI | MR | Zbl | DOI
[5] A. Kh. Khachatryana, Kh. A. Khachatryan, and H. S. Petrosyan, “Asymptotic behavior of a solution for one class of nonlinear integro-differential equations in the income distribution problem”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 27:1 (2021), 188–206 | DOI | MR
[6] J. D. Sargan, “The distribution of wealth”, Econometrica, 25:4 (1957), 568–590 | DOI | MR | Zbl
[7] N. B. Engibaryan, “On a problem in nonlinear radiative transfer”, Astrofizika, 2:1 (1966), 31–36 ; English transl. Astrophysics, 2:1 (1966), 12–14 (https://arar.sci.am/dlibra/publication/27739/edition/24782/content) | DOI
[8] Kh. A. Khachatryan and H. S. Petrosyan, “On the construction of an integrable solution to one class of nonlinear integral equations of Hammerstein–Nemytskii type on the whole axis”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 26:2 (2020), 278–287 | DOI | MR
[9] Kh. A. Khachatryan, “On positive solutions of one class of nonlinear integral equations of Hammerstein–Nemytskii type on the whole axis”, Tr. Mosk. Mat. Obs., 75, no. 1, MCCME, Moscow, 2014, 1–14 ; English transl. Trans. Moscow Math. Soc., 75 (2014), 1–12 | MR | Zbl | DOI
[10] Kh. A. Khachatryan, “On solution of a system of Hammerstein–Nemitskii type nonlinear integral equations on whole axis”, Tr. Inst. Mat., 21:2 (2013), 154–161 (Russian)
[11] Kh. A. Khachatryan and H. S. Petrosyan, “On the solvability of a class of nonlinear Hammerstein–Stieltjes integral equations on the whole line”, Trudy Mat. Inst. Steklova, 308, Differential equations and dynamical systems (2020), 253–264 ; English transl. Proc. Steklov Inst. Math., 308 (2020), 238–249 | DOI | MR | Zbl | DOI
[12] A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis, 5th ed., Nauka, Moscow, 1981 ; English transl. of 1st ed. v. I, II, Graylock Press, Albany, NY, 1957, 1961 | MR | Zbl | MR | MR | Zbl
[13] M. A. Krasnosel'skii, P. P. Zabreyko, E. I. Pustylnik, and P. E. Sobolevski, Integral operators in spaces of summable functions, Nauka, Moscow, 1966 ; English transl. Monographs Textbooks Mech. Solids Fluids: Mech. Anal., Noordhoff International Publishing, Leiden, 1976 | MR | Zbl | MR | Zbl