Modification of Poincar\' e's
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 852-875

Voir la notice de l'article provenant de la source Math-Net.Ru

The modified Poincaré construction (a generalization of Poincaré's homological operator) was earlier used to estimate the dimension of the local automorphism group for an arbitrary germ of a real-analytic hypersurface in $\mathbf{C}^3$. In the present paper we prove the following alternative. For every hypersurface in $\mathbf{C}^4$, this dimension is either infinite or does not exceed $24$. Moreover, $24$ occurs only for a non-degenerate hyperquadric (one of the two). If the hypersurface is $2$-nondegenerate (resp. $3$-non-degenerate) at a generic point, the bound can be improved to $17$ (resp. $20$).
Keywords: $CR$-manifold, automorphisms, model surfaces.
@article{IM2_2022_86_5_a2,
     author = {V. K. Beloshapka},
     title = {Modification of {Poincar\'} e's},
     journal = {Izvestiya. Mathematics },
     pages = {852--875},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Modification of Poincar\' e's
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 852
EP  - 875
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/
LA  - en
ID  - IM2_2022_86_5_a2
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Modification of Poincar\' e's
%J Izvestiya. Mathematics 
%D 2022
%P 852-875
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/
%G en
%F IM2_2022_86_5_a2
V. K. Beloshapka. Modification of Poincar\' e's. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 852-875. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/