Modification of Poincar\' e's
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 852-875.

Voir la notice de l'article provenant de la source Math-Net.Ru

The modified Poincaré construction (a generalization of Poincaré's homological operator) was earlier used to estimate the dimension of the local automorphism group for an arbitrary germ of a real-analytic hypersurface in $\mathbf{C}^3$. In the present paper we prove the following alternative. For every hypersurface in $\mathbf{C}^4$, this dimension is either infinite or does not exceed $24$. Moreover, $24$ occurs only for a non-degenerate hyperquadric (one of the two). If the hypersurface is $2$-nondegenerate (resp. $3$-non-degenerate) at a generic point, the bound can be improved to $17$ (resp. $20$).
Keywords: $CR$-manifold, automorphisms, model surfaces.
@article{IM2_2022_86_5_a2,
     author = {V. K. Beloshapka},
     title = {Modification of {Poincar\'} e's},
     journal = {Izvestiya. Mathematics },
     pages = {852--875},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Modification of Poincar\' e's
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 852
EP  - 875
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/
LA  - en
ID  - IM2_2022_86_5_a2
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Modification of Poincar\' e's
%J Izvestiya. Mathematics 
%D 2022
%P 852-875
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/
%G en
%F IM2_2022_86_5_a2
V. K. Beloshapka. Modification of Poincar\' e's. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 852-875. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/

[1] H. Poincare, “Les fonctions analytiques de deux variables et la représentation conforme”, Rend. Circ. Mat. Palermo, 23 (1907), 185–220 | DOI | Zbl

[2] S. S. Chern and J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR | Zbl

[3] V. K. Beloshapka, “Symmetries of real hypersurfaces in complex 3-space”, Mat. Zametki, 78:2 (2005), 171–179 ; English transl. Math. Notes, 78:2 (2005), 156–163 | DOI | MR | Zbl | DOI

[4] V. K. Beloshapka, “Automorphisms of degenerate hypersurfaces in $\mathbf{C}^2$ and a dimension conjecture”, Russ. J. Math. Phys., 4:3 (1996), 393–396 | MR | Zbl

[5] M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild, “CR automorphisms of real analytic manifolds in complex space”, Comm. Anal. Geom., 6:2 (1998), 291–315 | DOI | MR | Zbl

[6] G. Fels and W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201:1 (2008), 1–82 | DOI | MR | Zbl

[7] A. Santi, “Homogeneous models for Levi degenerate CR manifolds”, Kyoto J. Math., 60:1 (2020), 291–334 | DOI | MR | Zbl

[8] D. Sykes and I. Zelenko, Maximal dimension of groups of symmetries of homogeneous 2-nondegenerate CR-structures of hypersurface type with a 1-dimensional Levi kernel, arXiv: 2102.08599

[9] G. E. Izotov, “On joint reduction of a quadratic form and a Hermitian form”, Izv. Vyssh. Ucheb. Zaved., 1957, no. 1, 143–159 (Russian) | MR | Zbl

[10] A. E. Ershova, “Automorphisms of 2-nondegenerate hypersurfaces in $\mathbb C^3$”, Mat. Zametki, 69:2 (2001), 214–222 ; English transl. Math. Notes, 69:2 (2001), 188–195 | DOI | MR | Zbl | DOI

[11] M. Kolar, F. Meylan, and D. Zaitsev, “Chern–Moser operators and polynomial models in CR geometry”, Adv. Math., 263 (2014), 321–356 | DOI | MR | Zbl

[12] W. Kaup, “Einige Bemerkungen über polynomiale Vektorfelder, Jordanalgebren und die Automorphismen von Siegelschen Gebieten”, Math. Ann., 204 (1973), 131–144 | DOI | MR | Zbl

[13] A. S. Labovskii, “On dimensions of the groups of biholomorphic automorphisms of real-analytic hypersurfaces”, Mat. Zametki, 61:3 (1997), 349–358 ; English transl. Math. Notes, 61:3 (1997), 287–294 | DOI | MR | Zbl | DOI

[14] B. Kruglikov, “Submaximally symmetric CR-structures”, J. Geom. Anal., 26:4 (2016), 3090–3097 | DOI | MR | Zbl

[15] B. Kruglikov, “Blow-ups and infinitesimal automorphisms of CR-manifolds”, Math. Z., 296:3-4 (2020), 1701–1724 | DOI | MR | Zbl

[16] I. Kossovskiy and R. Shafikov, “Analytic differential equations and spherical real hypersurfaces”, J. Differential Geom., 102:1 (2016), 67–126 | DOI | MR | Zbl

[17] A. Isaev and B. Kruglikov, “On the symmetry algebras of 5-dimensional CR-manifolds”, Adv. Math., 322 (2017), 530–564 | DOI | MR | Zbl

[18] V. K. Beloshapka, “$CR$-manifolds of finite Bloom–Graham type: the model surface method”, Russ. J. Math. Phys., 27:2 (2020), 155–174 | DOI | MR | Zbl