Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_5_a2, author = {V. K. Beloshapka}, title = {Modification of {Poincar\'} e's}, journal = {Izvestiya. Mathematics }, pages = {852--875}, publisher = {mathdoc}, volume = {86}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/} }
V. K. Beloshapka. Modification of Poincar\' e's. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 852-875. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/
[1] H. Poincare, “Les fonctions analytiques de deux variables et la représentation conforme”, Rend. Circ. Mat. Palermo, 23 (1907), 185–220 | DOI | Zbl
[2] S. S. Chern and J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR | Zbl
[3] V. K. Beloshapka, “Symmetries of real hypersurfaces in complex 3-space”, Mat. Zametki, 78:2 (2005), 171–179 ; English transl. Math. Notes, 78:2 (2005), 156–163 | DOI | MR | Zbl | DOI
[4] V. K. Beloshapka, “Automorphisms of degenerate hypersurfaces in $\mathbf{C}^2$ and a dimension conjecture”, Russ. J. Math. Phys., 4:3 (1996), 393–396 | MR | Zbl
[5] M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild, “CR automorphisms of real analytic manifolds in complex space”, Comm. Anal. Geom., 6:2 (1998), 291–315 | DOI | MR | Zbl
[6] G. Fels and W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201:1 (2008), 1–82 | DOI | MR | Zbl
[7] A. Santi, “Homogeneous models for Levi degenerate CR manifolds”, Kyoto J. Math., 60:1 (2020), 291–334 | DOI | MR | Zbl
[8] D. Sykes and I. Zelenko, Maximal dimension of groups of symmetries of homogeneous 2-nondegenerate CR-structures of hypersurface type with a 1-dimensional Levi kernel, arXiv: 2102.08599
[9] G. E. Izotov, “On joint reduction of a quadratic form and a Hermitian form”, Izv. Vyssh. Ucheb. Zaved., 1957, no. 1, 143–159 (Russian) | MR | Zbl
[10] A. E. Ershova, “Automorphisms of 2-nondegenerate hypersurfaces in $\mathbb C^3$”, Mat. Zametki, 69:2 (2001), 214–222 ; English transl. Math. Notes, 69:2 (2001), 188–195 | DOI | MR | Zbl | DOI
[11] M. Kolar, F. Meylan, and D. Zaitsev, “Chern–Moser operators and polynomial models in CR geometry”, Adv. Math., 263 (2014), 321–356 | DOI | MR | Zbl
[12] W. Kaup, “Einige Bemerkungen über polynomiale Vektorfelder, Jordanalgebren und die Automorphismen von Siegelschen Gebieten”, Math. Ann., 204 (1973), 131–144 | DOI | MR | Zbl
[13] A. S. Labovskii, “On dimensions of the groups of biholomorphic automorphisms of real-analytic hypersurfaces”, Mat. Zametki, 61:3 (1997), 349–358 ; English transl. Math. Notes, 61:3 (1997), 287–294 | DOI | MR | Zbl | DOI
[14] B. Kruglikov, “Submaximally symmetric CR-structures”, J. Geom. Anal., 26:4 (2016), 3090–3097 | DOI | MR | Zbl
[15] B. Kruglikov, “Blow-ups and infinitesimal automorphisms of CR-manifolds”, Math. Z., 296:3-4 (2020), 1701–1724 | DOI | MR | Zbl
[16] I. Kossovskiy and R. Shafikov, “Analytic differential equations and spherical real hypersurfaces”, J. Differential Geom., 102:1 (2016), 67–126 | DOI | MR | Zbl
[17] A. Isaev and B. Kruglikov, “On the symmetry algebras of 5-dimensional CR-manifolds”, Adv. Math., 322 (2017), 530–564 | DOI | MR | Zbl
[18] V. K. Beloshapka, “$CR$-manifolds of finite Bloom–Graham type: the model surface method”, Russ. J. Math. Phys., 27:2 (2020), 155–174 | DOI | MR | Zbl