Modification of Poincaré's
Izvestiya. Mathematics, Tome 86 (2022) no. 5, pp. 852-875 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The modified Poincaré construction (a generalization of Poincaré's homological operator) was earlier used to estimate the dimension of the local automorphism group for an arbitrary germ of a real-analytic hypersurface in $\mathbf{C}^3$. In the present paper we prove the following alternative. For every hypersurface in $\mathbf{C}^4$, this dimension is either infinite or does not exceed $24$. Moreover, $24$ occurs only for a non-degenerate hyperquadric (one of the two). If the hypersurface is $2$-nondegenerate (resp. $3$-non-degenerate) at a generic point, the bound can be improved to $17$ (resp. $20$).
Keywords: $CR$-manifold, automorphisms, model surfaces.
@article{IM2_2022_86_5_a2,
     author = {V. K. Beloshapka},
     title = {Modification of {Poincar\'e's}},
     journal = {Izvestiya. Mathematics},
     pages = {852--875},
     year = {2022},
     volume = {86},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Modification of Poincaré's
JO  - Izvestiya. Mathematics
PY  - 2022
SP  - 852
EP  - 875
VL  - 86
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/
LA  - en
ID  - IM2_2022_86_5_a2
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Modification of Poincaré's
%J Izvestiya. Mathematics
%D 2022
%P 852-875
%V 86
%N 5
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/
%G en
%F IM2_2022_86_5_a2
V. K. Beloshapka. Modification of Poincaré's. Izvestiya. Mathematics, Tome 86 (2022) no. 5, pp. 852-875. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a2/

[1] H. Poincare, “Les fonctions analytiques de deux variables et la représentation conforme”, Rend. Circ. Mat. Palermo, 23 (1907), 185–220 | DOI | Zbl

[2] S. S. Chern and J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR | Zbl

[3] V. K. Beloshapka, “Symmetries of real hypersurfaces in complex 3-space”, Mat. Zametki, 78:2 (2005), 171–179 ; English transl. Math. Notes, 78:2 (2005), 156–163 | DOI | MR | Zbl | DOI

[4] V. K. Beloshapka, “Automorphisms of degenerate hypersurfaces in $\mathbf{C}^2$ and a dimension conjecture”, Russ. J. Math. Phys., 4:3 (1996), 393–396 | MR | Zbl

[5] M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild, “CR automorphisms of real analytic manifolds in complex space”, Comm. Anal. Geom., 6:2 (1998), 291–315 | DOI | MR | Zbl

[6] G. Fels and W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201:1 (2008), 1–82 | DOI | MR | Zbl

[7] A. Santi, “Homogeneous models for Levi degenerate CR manifolds”, Kyoto J. Math., 60:1 (2020), 291–334 | DOI | MR | Zbl

[8] D. Sykes and I. Zelenko, Maximal dimension of groups of symmetries of homogeneous 2-nondegenerate CR-structures of hypersurface type with a 1-dimensional Levi kernel, arXiv: 2102.08599

[9] G. E. Izotov, “On joint reduction of a quadratic form and a Hermitian form”, Izv. Vyssh. Ucheb. Zaved., 1957, no. 1, 143–159 (Russian) | MR | Zbl

[10] A. E. Ershova, “Automorphisms of 2-nondegenerate hypersurfaces in $\mathbb C^3$”, Mat. Zametki, 69:2 (2001), 214–222 ; English transl. Math. Notes, 69:2 (2001), 188–195 | DOI | MR | Zbl | DOI

[11] M. Kolar, F. Meylan, and D. Zaitsev, “Chern–Moser operators and polynomial models in CR geometry”, Adv. Math., 263 (2014), 321–356 | DOI | MR | Zbl

[12] W. Kaup, “Einige Bemerkungen über polynomiale Vektorfelder, Jordanalgebren und die Automorphismen von Siegelschen Gebieten”, Math. Ann., 204 (1973), 131–144 | DOI | MR | Zbl

[13] A. S. Labovskii, “On dimensions of the groups of biholomorphic automorphisms of real-analytic hypersurfaces”, Mat. Zametki, 61:3 (1997), 349–358 ; English transl. Math. Notes, 61:3 (1997), 287–294 | DOI | MR | Zbl | DOI

[14] B. Kruglikov, “Submaximally symmetric CR-structures”, J. Geom. Anal., 26:4 (2016), 3090–3097 | DOI | MR | Zbl

[15] B. Kruglikov, “Blow-ups and infinitesimal automorphisms of CR-manifolds”, Math. Z., 296:3-4 (2020), 1701–1724 | DOI | MR | Zbl

[16] I. Kossovskiy and R. Shafikov, “Analytic differential equations and spherical real hypersurfaces”, J. Differential Geom., 102:1 (2016), 67–126 | DOI | MR | Zbl

[17] A. Isaev and B. Kruglikov, “On the symmetry algebras of 5-dimensional CR-manifolds”, Adv. Math., 322 (2017), 530–564 | DOI | MR | Zbl

[18] V. K. Beloshapka, “$CR$-manifolds of finite Bloom–Graham type: the model surface method”, Russ. J. Math. Phys., 27:2 (2020), 155–174 | DOI | MR | Zbl