New estimates for short Kloosterman sums with weights
Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 560-585.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we obtain a new bound for short Kloosterman sums modulo a prime with a weight. The derivation of the bound is based on Karatsuba's method (1993–1995) of estimating incomplete Kloosterman sums and on a modification of the method proposed by Bourgain and Garaev (2014). The theorems proved in the paper refine results obtained earlier by Korolev (2010).
Keywords: short Kloosterman sums, reciprocals modulo a given integer.
@article{IM2_2022_86_3_a3,
     author = {N. K. Semenova},
     title = {New estimates for short {Kloosterman} sums with weights},
     journal = {Izvestiya. Mathematics },
     pages = {560--585},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a3/}
}
TY  - JOUR
AU  - N. K. Semenova
TI  - New estimates for short Kloosterman sums with weights
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 560
EP  - 585
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a3/
LA  - en
ID  - IM2_2022_86_3_a3
ER  - 
%0 Journal Article
%A N. K. Semenova
%T New estimates for short Kloosterman sums with weights
%J Izvestiya. Mathematics 
%D 2022
%P 560-585
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a3/
%G en
%F IM2_2022_86_3_a3
N. K. Semenova. New estimates for short Kloosterman sums with weights. Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 560-585. http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a3/

[1] H. D. Kloosterman, “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta Math., 49:3-4 (1927), 407–464 | DOI | MR | Zbl

[2] A. Weil, “On some exponential sums”, Proc. Nat. Acad. Sci. U.S.A., 34:5 (1948), 204–207 | DOI | MR | Zbl

[3] T. Estermann, “On Kloosterman's sum”, Mathematika, 8 (1961), 83–86 | DOI | MR | Zbl

[4] A. A. Karatsuba, “The distribution of inverses in a residue ring modulo a given modulus”, Dokl. RAN, 333:2 (1993), 138–139 ; English transl. Russian Acad. Sci. Dokl. Math., 48:3 (1994), 452–454 | MR | Zbl

[5] A. A. Karatsuba, “Fractional parts of functions of a special form”, Izv. RAN. Ser. Mat., 59:4 (1995), 61–80 ; English transl. Izv. Math., 59:4 (1995), 721–740 | MR | Zbl | DOI

[6] A. A. Karatsuba, “Analogues of Kloosterman sums”, Izv. RAN. Ser. Mat., 59:5 (1995), 93–102 ; English transl. Izv. Math., 59:5 (1995), 971–981 | MR | Zbl | DOI

[7] J. Bourgain and M. Z. Garaev, “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. RAN. Ser. Mat., 78:4 (2014), 19–72 ; English transl. Izv. Math., 78:4 (2014), 656–707 | DOI | MR | Zbl | DOI

[8] M. A. Korolev, “Incomplete Kloosterman sums and their applications”, Izv. RAN. Ser. Mat., 64:6 (2000), 41–64 ; English transl. Izv. Math., 64:6 (2000), 1129–1152 | DOI | MR | Zbl | DOI

[9] M. A. Korolev, “Short Kloosterman sums with weights”, Mat. Zametki, 88:3 (2010), 415–427 ; English transl. Math. Notes, 88:3 (2010), 374–385 | DOI | MR | Zbl | DOI

[10] M. A. Korolev, “Generalized Kloosterman sum with primes”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 296, MAIK “Nauka/Interperiodica”, Moscow, 2017, 163–180 ; English transl. Proc. Steklov Inst. Math., 296 (2017), 154–171 | DOI | MR | Zbl | DOI

[11] M. A. Korolev, “New estimate for a Kloosterman sum with primes for a composite modulus”, Mat.Sb., 209:5 (2018), 54–61 ; English transl. Sb. Math., 209:5 (2018), 652–659 | DOI | MR | Zbl | DOI

[12] M. A. Korolev, “Methods for estimating short Kloosterman sums”, Chebyshevskii Sb., 17:4 (2016), 79–109 (Russian) | MR | Zbl

[13] A. A. Karatsuba, “Kloosterman double sums”, Mat. Zametki, 66:5 (1999), 682–687 ; English transl. Math. Notes, 66:5 (1999), 565–569 | DOI | MR | Zbl | DOI

[14] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Stud. Adv. Math., 46, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[15] M. Korolev and I. Shparlinski, “Sums of algebraic trace functions twisted by arithmetic functions”, Pacific J. Math., 304:2 (2020), 505–522 | DOI | MR | Zbl

[16] H. Halberstam and H.-E. Richert, “On a result of R. R. Hall”, J. Number Theory, 11:1 (1979), 76–89 | DOI | MR | Zbl