Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_3_a1, author = {V. A. Krasnov}, title = {The real {Pl\"} {ucker--Klein} map}, journal = {Izvestiya. Mathematics }, pages = {456--507}, publisher = {mathdoc}, volume = {86}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a1/} }
V. A. Krasnov. The real Pl\" ucker--Klein map. Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 456-507. http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a1/
[1] J. Plücker, “Über ein neues Coordinatensystem”, J. Reine Angew. Math., 1830:5 (1830), 1–36 | DOI | MR | Zbl
[2] F. Klein, “Zur Theorie der Liniencomplexe des ersten und zweiten Grades”, Math. Ann., 2:2 (1870), 198–226 | DOI | MR | Zbl
[3] C. M. Jessop, A treatise on the line complex, Cambridge Univ. Press, Cambridge, 1903 | MR | Zbl
[4] R. W. H. T. Hudson, Kummer's quartic surface, Cambridge Univ. Press, Cambridge, 1905 ; Cambridge Math. Lib., Rev. reprint with a foreword by W. Barth, 1990 | Zbl | MR | Zbl
[5] K. Rohn, “Die verschiedenen Gestalten der Kummer'schen Fläche”, Math. Ann., 18:1 (1881), 99–159 | DOI | MR | Zbl
[6] V. A. Krasnov, “Real three-dimensional biquadrics”, Izv. Ross. Akad. Nauk Ser. Mat., 74:4 (2010), 119–144 ; English transl. Izv. Math., 74:4 (2010), 781–804 | DOI | MR | Zbl | DOI
[7] V. A. Krasnov, “On real quadric line complexes”, Izv. Ross. Akad. Nauk Ser. Mat., 74:6 (2010), 157–182 ; English transl. Izv. Math., 74:6 (2010), 1255–1276 | DOI | MR | Zbl | DOI
[8] V. A. Krasnov, “Rigid isotopy classification of real quadric line complexes and associated Kummer surfaces”, Mat. Zametki, 89:5 (2011), 705–718 ; English transl. Math. Notes, 89:5 (2011), 661–671 | DOI | MR | Zbl | DOI
[9] V. A. Krasnov, “Real Kummer surfaces”, Izv. Ross. Akad. Nauk Ser. Mat., 83:1 (2019), 75–118 ; English transl. Izv. Math., 83:1 (2019), 65–103 | DOI | MR | Zbl | DOI
[10] V. A. Krasnov, “Real Kummer quartics and their Heisenberg invariance”, Izv. Ross. Akad. Nauk Ser. Mat., 84:1 (2020), 105–162 ; English transl. Izv. Math., 84:1 (2020), 95–145 | DOI | MR | Zbl | DOI
[11] V. A. Krasnov, “Real Segre cubics, Igusa quartics and Kummer quartics”, Izv. Ross. Akad. Nauk Ser. Mat., 84:3 (2020), 71–118 ; English transl. Izv. Math., 84:3 (2020), 502–544 | DOI | MR | Zbl | DOI
[12] M. Reid, The complete intersection of two or more quadrics, Ph.D. thesis, Univ. of Cambridge, Cambridge, 1972 http://homepages.warwick.ac.uk/~masda/3folds/
[13] V. A. Krasnov, “A generalized Plucker–Klein mapping”, Izv. Ross. Akad. Nauk Ser. Mat., 86:2 (2022), 80–127 ; English transl. Izv. Math., 86 (2022) (to appear) | DOI
[14] P. Griffiths and J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978 ; Russian transl. Mir, Moscow, 1982 | MR | Zbl | MR | Zbl
[15] W. Fulton and J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 ; Russian tranbsl. MCCME, Moscow, 2017 | DOI | MR | Zbl
[16] S. López de Medrano, “Topology of the intersection of quadrics in $\mathbb{R}^n$”, Algebraic topology (Arcata, CA 1986), Lecture Notes in Math., 1370, Springer, Berlin, 1989, 280–292 | DOI | MR | Zbl
[17] A. A. Agrachev and R. V. Gamkrelidze, “Quadratic maps and smooth vector-valued functions: Euler characteristics of level sets”, Itogi Nauki Tekhn. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 35, VINITI, Moscow, 1989, 179–239 ; English transl. J. Soviet Math., 55:4 (1991), 1892–1928 | MR | Zbl | DOI
[18] A. Degtyarev, I. Itenberg, and V. Kharlamov, Real Enriques surfaces, Lecture Notes in Math., 1746, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl
[19] V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”, Izv. Akad. Nauk SSSR Ser. Mat., 43:1 (1979), 111–177 ; English transl. Math. USSR-Izv., 14:1 (1980), 103–167 | MR | Zbl | DOI
[20] M. M. Kapranov, “Veronese curves and Grothendieck–Knudsen moduli space $\overline{M}_{0,n}$”, J. Algebraic Geom., 2:2 (1993), 239–262 | MR | Zbl
[21] M. Hall, Jr., The theory of groups, The Macmillan Co., New York, NY, 1959 ; Russian transl. IL, Moscow, 1962 | MR | Zbl | Zbl
[22] V. A. Krasnov, “Maximal intersections of three real quadrics”, Izv. Ross. Akad. Nauk Ser. Mat., 75:3 (2011), 127–146 ; English transl. Izv. Math., 75:3 (2011), 569–587 | DOI | MR | Zbl | DOI
[23] P. Muth, “Über reelle Äquivalenz von Scharen reeller quadratischer Formen”, J. Reine Angew. Math., 1905:128 (1905), 302–321 | DOI | MR | Zbl
[24] C T. C. Wall, “Stability, pencils and polytopes”, Bull. London Math. Soc., 12:6 (1980), 401–421 | DOI | MR | Zbl
[25] Wei-Liang Chow, “On the geometry of algebraic homogeneous spaces”, Ann. of Math. (2), 50 (1949), 32–67 | DOI | MR | Zbl
[26] Göttingen collection of mathematical models, A. Algebraic curves and surfaces. VII. Line geometry http://www.modellsammlung.uni-goettingen.de
[27] R. Donagi, “Group law on the intersection of two quadrics”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7:2 (1980), 217–239 | MR | Zbl
[28] A. Comessatti, “Sulle varietà abeliane reali”, Ann. Mat. Pura Appl., 2:1 (1925), 67–106 | DOI | MR | Zbl
[29] B. H. Gross and J. Harris, “Real algebraic curves”, Ann. Sci. École Norm. Sup. (4), 14:2 (1981), 157–182 | DOI | MR | Zbl
[30] R. Silhol, Real algebraic surfaces, Lecture Notes in Math., 1392, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl
[31] V. A. Krasnov, “Albanese mapping for real algebraic varieites”, Mat. Zametki, 32:3 (1982), 365–374 ; English transl. Math. Notes, 32:3 (1982), 661–666 | MR | Zbl | DOI
[32] V. A. Krasnov, “Albanese map for $\mathrm{GMZ}$-varieties”, Mat. Zametki, 35:5 (1984), 739–747 ; English transl. Math. Notes, 35:5 (1984), 391–396 | MR | Zbl | DOI
[33] V. A. Krasnov, “Harnack–Thom inequalities for mappings of real algebraic varieties”, Izv. Ross. Akad. Nauk Ser. Mat., 47:2 (1983), 268–297 ; English transl. Math. USSR-Izv., 22:2 (1984), 247–275 | MR | Zbl | DOI
[34] V. A. Krasnov, “On intersections of two real quadrics”, Izv. Ross. Akad. Nauk Ser. Mat., 82:1 (2018), 97–150 ; English transl. Izv. Math., 82:1 (2018), 91–139 | DOI | MR | Zbl | DOI
[35] O. V. Danilova and V. A. Krasnov, “The Abel–Jacobi map for real hyperelliptic surfaces of genus 3”, Mat. Zametki, 75:5 (2004), 643–651 ; English transl. Math. Notes, 75:5 (2004), 601–607 | DOI | MR | Zbl | DOI