Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_1_a4, author = {K. P. Isaev and R. S. Yulmukhametov}, title = {Unconditional bases in radial {Hilbert} spaces}, journal = {Izvestiya. Mathematics }, pages = {150--168}, publisher = {mathdoc}, volume = {86}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a4/} }
K. P. Isaev; R. S. Yulmukhametov. Unconditional bases in radial Hilbert spaces. Izvestiya. Mathematics , Tome 86 (2022) no. 1, pp. 150-168. http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a4/
[1] N. Aronszajn, “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68:3 (1950), 337–404 | DOI | MR | Zbl
[2] S. V. Hruščev, N. K. Nikol'skii, B. S. Pavlov, “Unconditional bases of exponentials and of reproducing kernels”, Complex analysis and spectral theory (Leningrad, 1979/1980), Lecture Notes in Math., 864, Springer, Berlin–New York, 1981, 214–335 | DOI | MR | Zbl
[3] A. F. Leontev, Ryady eksponent, Nauka, M., 1976, 536 pp. | MR | Zbl
[4] Yu. F. Korobeinik, “Representing systems”, Russian Math. Surveys, 36:1 (1981), 75–137 | DOI | MR | Zbl
[5] K. P. Isaev, “Representing exponential systems in spaces of analytic functions”, J. Math. Sci. (N.Y.), 257:2 (2021), 143–205 | DOI | MR | Zbl
[6] K. P. Isaev, K. V. Trounov, R. S. Yulmukhametov, “Representing systems of exponentials in projective limits of weighted subspaces of $H(D)$”, Izv. Math., 83:2 (2019), 232–250 | DOI | DOI | MR | Zbl
[7] D. L. Russell, “On exponential bases for the Sobolev spaces over an interval”, J. Math. Anal. Appl., 87:2 (1982), 528–550 | DOI | MR | Zbl
[8] B. Ja. Levin, Ju. I. Lyubarskii, “Interpolation by means of special classes of entire functions and related expansions in series of exponentials”, Math. USSR-Izv., 9:3 (1975), 621–662 | DOI | MR | Zbl
[9] K. P. Isaev, “Bazisy Rissa iz eksponent v prostranstvakh Bergmana na vypuklykh mnogougolnikakh”, Ufimsk. matem. zhurn., 2:1 (2010), 71–86 | Zbl
[10] V. I. Lutsenko, Bezuslovnye bazisy iz eksponent v prostranstvakh Smirnova, Diss. ... kand. fiz.-matem. nauk, In-t matem. s VTs UNTs RAN, Ufa, 1992
[11] K. P. Isaev, R. S. Yulmukhametov, “The absence of unconditional bases of exponentials in Bergman spaces on non-polygonal domains”, Izv. Math., 71:6 (2007), 1145–1166 | DOI | DOI | MR | Zbl
[12] R. A. Bashmakov, A. A. Makhota, K. V. Trounov, “On absence conditions of unconditional bases of exponents”, Ufa Math. J., 7:2 (2015), 17–32 | DOI | MR
[13] K. P. Isaev, “On unconditional exponential bases in weighted spaces on interval of real axis”, Lobachevskii J. Math., 38:1 (2017), 48–61 | DOI | MR | Zbl
[14] K. Seip, “Density theorems for sampling and interpolation in the Bargmann–Fock space. I”, J. Reine Angew. Math., 429 (1992), 91–106 | DOI | MR | Zbl
[15] K. Seip, R. Wallstén, “Density theorems for sampling and interpolation in the Bargmann–Fock space. II”, J. Reine Angew. Math., 429 (1992), 107–113 | MR | Zbl
[16] A. Borichev, R. Dhues, K. Kellay, “Sampling and interpolation in large Bergman and Fock spaces”, J. Funct. Anal., 242:2 (2007), 563–606 | DOI | MR | Zbl
[17] A. Borichev, Yu. Lyubarskii, “Riesz bases of reproducing kernels in Fock-type spaces”, J. Inst. Math. Jussieu, 9:3 (2010), 449–461 | DOI | MR | Zbl
[18] A. Baranov, Yu. Belov, A. Borichev, “Fock type spaces with Riesz bases of reproducing kernels and de Branges spaces”, Studia Math., 236:2 (2017), 127–142 | DOI | MR | Zbl
[19] V. I. Lutsenko, R. S. Yulmukhametov, “Generalization of the Paley–Wiener theorem in weighted spaces”, Math. Notes, 48:5 (1990), 1131–1136 | DOI | MR | Zbl
[20] R. A. Bashmakov, K. P. Isaev, R. S. Yulmukhametov, “O geometricheskikh kharakteristikakh vypuklykh funktsii i integralax Laplasa”, Ufimsk. matem. zhurn., 2:1 (2010), 3–16 | Zbl
[21] K. P. Isaev, A. V. Lutsenko, R. S. Yulmukhametov, “Unconditional bases in weakly weighted spaces of entire functions”, St. Petersburg Math. J., 30:2 (2019), 253–265 | DOI | MR | Zbl
[22] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959, x+374 pp., ix+276 pp. | MR | MR | Zbl | Zbl