Unconditional bases in radial Hilbert spaces
Izvestiya. Mathematics , Tome 86 (2022) no. 1, pp. 150-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove necessary and (separate) sufficient conditions for the existence of unconditional bases of reproducing kernels in abstract radial Hilbert function spaces that are stable under division, in terms of the norms of monomials.
Keywords: Hilbert spaces, entire functions, unconditional bases, reproducing kernels.
@article{IM2_2022_86_1_a4,
     author = {K. P. Isaev and R. S. Yulmukhametov},
     title = {Unconditional bases in radial {Hilbert} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {150--168},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a4/}
}
TY  - JOUR
AU  - K. P. Isaev
AU  - R. S. Yulmukhametov
TI  - Unconditional bases in radial Hilbert spaces
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 150
EP  - 168
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a4/
LA  - en
ID  - IM2_2022_86_1_a4
ER  - 
%0 Journal Article
%A K. P. Isaev
%A R. S. Yulmukhametov
%T Unconditional bases in radial Hilbert spaces
%J Izvestiya. Mathematics 
%D 2022
%P 150-168
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a4/
%G en
%F IM2_2022_86_1_a4
K. P. Isaev; R. S. Yulmukhametov. Unconditional bases in radial Hilbert spaces. Izvestiya. Mathematics , Tome 86 (2022) no. 1, pp. 150-168. http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a4/

[1] N. Aronszajn, “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68:3 (1950), 337–404 | DOI | MR | Zbl

[2] S. V. Hruščev, N. K. Nikol'skii, B. S. Pavlov, “Unconditional bases of exponentials and of reproducing kernels”, Complex analysis and spectral theory (Leningrad, 1979/1980), Lecture Notes in Math., 864, Springer, Berlin–New York, 1981, 214–335 | DOI | MR | Zbl

[3] A. F. Leontev, Ryady eksponent, Nauka, M., 1976, 536 pp. | MR | Zbl

[4] Yu. F. Korobeinik, “Representing systems”, Russian Math. Surveys, 36:1 (1981), 75–137 | DOI | MR | Zbl

[5] K. P. Isaev, “Representing exponential systems in spaces of analytic functions”, J. Math. Sci. (N.Y.), 257:2 (2021), 143–205 | DOI | MR | Zbl

[6] K. P. Isaev, K. V. Trounov, R. S. Yulmukhametov, “Representing systems of exponentials in projective limits of weighted subspaces of $H(D)$”, Izv. Math., 83:2 (2019), 232–250 | DOI | DOI | MR | Zbl

[7] D. L. Russell, “On exponential bases for the Sobolev spaces over an interval”, J. Math. Anal. Appl., 87:2 (1982), 528–550 | DOI | MR | Zbl

[8] B. Ja. Levin, Ju. I. Lyubarskii, “Interpolation by means of special classes of entire functions and related expansions in series of exponentials”, Math. USSR-Izv., 9:3 (1975), 621–662 | DOI | MR | Zbl

[9] K. P. Isaev, “Bazisy Rissa iz eksponent v prostranstvakh Bergmana na vypuklykh mnogougolnikakh”, Ufimsk. matem. zhurn., 2:1 (2010), 71–86 | Zbl

[10] V. I. Lutsenko, Bezuslovnye bazisy iz eksponent v prostranstvakh Smirnova, Diss. ... kand. fiz.-matem. nauk, In-t matem. s VTs UNTs RAN, Ufa, 1992

[11] K. P. Isaev, R. S. Yulmukhametov, “The absence of unconditional bases of exponentials in Bergman spaces on non-polygonal domains”, Izv. Math., 71:6 (2007), 1145–1166 | DOI | DOI | MR | Zbl

[12] R. A. Bashmakov, A. A. Makhota, K. V. Trounov, “On absence conditions of unconditional bases of exponents”, Ufa Math. J., 7:2 (2015), 17–32 | DOI | MR

[13] K. P. Isaev, “On unconditional exponential bases in weighted spaces on interval of real axis”, Lobachevskii J. Math., 38:1 (2017), 48–61 | DOI | MR | Zbl

[14] K. Seip, “Density theorems for sampling and interpolation in the Bargmann–Fock space. I”, J. Reine Angew. Math., 429 (1992), 91–106 | DOI | MR | Zbl

[15] K. Seip, R. Wallstén, “Density theorems for sampling and interpolation in the Bargmann–Fock space. II”, J. Reine Angew. Math., 429 (1992), 107–113 | MR | Zbl

[16] A. Borichev, R. Dhues, K. Kellay, “Sampling and interpolation in large Bergman and Fock spaces”, J. Funct. Anal., 242:2 (2007), 563–606 | DOI | MR | Zbl

[17] A. Borichev, Yu. Lyubarskii, “Riesz bases of reproducing kernels in Fock-type spaces”, J. Inst. Math. Jussieu, 9:3 (2010), 449–461 | DOI | MR | Zbl

[18] A. Baranov, Yu. Belov, A. Borichev, “Fock type spaces with Riesz bases of reproducing kernels and de Branges spaces”, Studia Math., 236:2 (2017), 127–142 | DOI | MR | Zbl

[19] V. I. Lutsenko, R. S. Yulmukhametov, “Generalization of the Paley–Wiener theorem in weighted spaces”, Math. Notes, 48:5 (1990), 1131–1136 | DOI | MR | Zbl

[20] R. A. Bashmakov, K. P. Isaev, R. S. Yulmukhametov, “O geometricheskikh kharakteristikakh vypuklykh funktsii i integralax Laplasa”, Ufimsk. matem. zhurn., 2:1 (2010), 3–16 | Zbl

[21] K. P. Isaev, A. V. Lutsenko, R. S. Yulmukhametov, “Unconditional bases in weakly weighted spaces of entire functions”, St. Petersburg Math. J., 30:2 (2019), 253–265 | DOI | MR | Zbl

[22] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959, x+374 pp., ix+276 pp. | MR | MR | Zbl | Zbl