Finitely generated subgroups of branch groups and subdirect products of just infinite groups
Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1128-1145

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to describe the structure of finitely generated subgroups of a family of branch groups containing the first Grigorchuk group and the Gupta–Sidki $3$-group. We then use this to show that all the groups in this family are subgroup separable (LERF). These results are obtained as a corollary of a more general structural statement on subdirect products of just infinite groups.
Keywords: just infinite groups, subdirect products, branch groups.
@article{IM2_2021_85_6_a3,
     author = {R. I. Grigorchuk and P.-H. Leemann and T. V. Nagnibeda},
     title = {Finitely generated subgroups of branch groups and subdirect products of just infinite groups},
     journal = {Izvestiya. Mathematics },
     pages = {1128--1145},
     publisher = {mathdoc},
     volume = {85},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a3/}
}
TY  - JOUR
AU  - R. I. Grigorchuk
AU  - P.-H. Leemann
AU  - T. V. Nagnibeda
TI  - Finitely generated subgroups of branch groups and subdirect products of just infinite groups
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 1128
EP  - 1145
VL  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a3/
LA  - en
ID  - IM2_2021_85_6_a3
ER  - 
%0 Journal Article
%A R. I. Grigorchuk
%A P.-H. Leemann
%A T. V. Nagnibeda
%T Finitely generated subgroups of branch groups and subdirect products of just infinite groups
%J Izvestiya. Mathematics 
%D 2021
%P 1128-1145
%V 85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a3/
%G en
%F IM2_2021_85_6_a3
R. I. Grigorchuk; P.-H. Leemann; T. V. Nagnibeda. Finitely generated subgroups of branch groups and subdirect products of just infinite groups. Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1128-1145. http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a3/