Finitely generated subgroups of branch groups and subdirect products of just infinite groups
Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1128-1145.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to describe the structure of finitely generated subgroups of a family of branch groups containing the first Grigorchuk group and the Gupta–Sidki $3$-group. We then use this to show that all the groups in this family are subgroup separable (LERF). These results are obtained as a corollary of a more general structural statement on subdirect products of just infinite groups.
Keywords: just infinite groups, subdirect products, branch groups.
@article{IM2_2021_85_6_a3,
     author = {R. I. Grigorchuk and P.-H. Leemann and T. V. Nagnibeda},
     title = {Finitely generated subgroups of branch groups and subdirect products of just infinite groups},
     journal = {Izvestiya. Mathematics },
     pages = {1128--1145},
     publisher = {mathdoc},
     volume = {85},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a3/}
}
TY  - JOUR
AU  - R. I. Grigorchuk
AU  - P.-H. Leemann
AU  - T. V. Nagnibeda
TI  - Finitely generated subgroups of branch groups and subdirect products of just infinite groups
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 1128
EP  - 1145
VL  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a3/
LA  - en
ID  - IM2_2021_85_6_a3
ER  - 
%0 Journal Article
%A R. I. Grigorchuk
%A P.-H. Leemann
%A T. V. Nagnibeda
%T Finitely generated subgroups of branch groups and subdirect products of just infinite groups
%J Izvestiya. Mathematics 
%D 2021
%P 1128-1145
%V 85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a3/
%G en
%F IM2_2021_85_6_a3
R. I. Grigorchuk; P.-H. Leemann; T. V. Nagnibeda. Finitely generated subgroups of branch groups and subdirect products of just infinite groups. Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1128-1145. http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a3/

[1] R. I. Grigorchuk, W. N. Herfort, P. A. Zalesskii, “The profinite completion of certain torsion $p$-groups”, Algebra, Moscow, 1998, de Gruyter, Berlin, 2000, 113–123 | DOI | MR | Zbl

[2] R. I. Grigorchuk, “Branch groups”, Math. Notes, 67:6 (2000), 718–723 | DOI | DOI | MR | Zbl

[3] R. I. Grigorchuk, “Just infinite branch groups”, New horizons in pro-$p$ groups, Progr. Math., 184, Birkhäuser Boston, Boston, MA, 2000, 121–179 | DOI | MR | Zbl

[4] V. Nekrashevych, Self-similar groups, Math. Surveys Monogr., 117, Amer. Math. Soc., Providence, RI, 2005, xii+231 pp. | DOI | MR | Zbl

[5] R. I. Grigorchuk, V. V. Nekrashevych, V. I. Sushchanskii, “Automata, dynamical systems, and groups”, Proc. Steklov Inst. Math., 231 (2000), 128–203 | MR | Zbl

[6] R. I. Grigorchuk, “On Milnor's problem of group growth”, Soviet Math. Dokl., 28 (1983), 23–26 | MR | Zbl

[7] P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 2000, vi+310 pp. | MR | Zbl

[8] R. Grigorchuk, “Solved and unsolved problems around one group”, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., 248, Birkhäuser, Basel, 2005, 117–218 | DOI | MR | Zbl

[9] T. Ceccherini-Silberstein, F. Scarabotti, F. Tolli, “The top of the lattice of normal subgroups of the Grigorchuk group”, J. Algebra, 246:1 (2001), 292–310 | DOI | MR | Zbl

[10] P.-H. Leemann, On subgroups and Schreier graphs of finitely generated groups, PhD thesis, No 4973, Univ. Genève, Genève, 2016, xii+155 pp. | DOI

[11] E. L. Pervova, “Everywhere dense subgroups of a group of tree automorphisms”, Proc. Steklov Inst. Math., 231 (2000), 339–350 | MR | Zbl

[12] P.-H. Leemann, Weakly maximal subgroups of branch groups, arXiv: 1910.06399

[13] R. Grigorchuk, T. Nagnibeda, “On subgroup structure of a 3-generated 2-group of intermediate growth”, in rep. No. 28/2008 ‘Profinite and asymptotic group theory’ (Oberwolfach, 2008), Oberwolfach Rep., 5 (2008), 1568–1571 | DOI

[14] R. I. Grigorchuk, J. S. Wilson, “A structural property concerning abstract commensurability of subgroups”, J. London Math. Soc. (2), 68:3 (2003), 671–682 | DOI | MR | Zbl

[15] A. Garrido, “Abstract commensurability and the Gupta–Sidki group”, Groups Geom. Dyn., 10:2 (2016), 523–543 | DOI | MR | Zbl

[16] L. Bartholdi, R. I. Grigorchuk, “On the spectrum of Hecke type operators related to some fractal groups”, Dinamicheskie sistemy, avtomaty i beskonechnye gruppy, Sbornik statei, Trudy MIAN, 231, Nauka, MAIK «Nauka/Interperiodika», M., 2000, 5–45 | MR | Zbl

[17] Kh. Bou-Rabee, P.-H. Leemann, T. Nagnibeda, “Weakly maximal subgroups in regular branch groups”, J. Algebra, 455 (2016), 347–357 | DOI | MR | Zbl

[18] R. Skipper, Ph. Wesolek, “On the Cantor–Bendixson rank of the Grigorchuk group and the Gupta–Sidki 3 group”, J. Algebra, 555 (2020), 386–405 | DOI | MR | Zbl

[19] R. I. Grigorchuk, “Degrees of growth of finitely generated groups, and the theory of invariant means”, Math. USSR-Izv., 25:2 (1985), 259–300 | DOI | MR | Zbl

[20] N. Gupta, S. Sidki, “On the Burnside problem for periodic groups”, Math. Z., 182:3 (1983), 385–388 | DOI | MR | Zbl

[21] N. Gupta, S. Sidki, “Some infinite $p$-groups”, Algebra i logika, 22:5 (1983), 584–589 | MR | Zbl

[22] L. Bartholdi, R. I. Grigorchuk, “On parabolic subgroups and Hecke algebras of some fractal groups”, Serdica Math. J., 28:1 (2002), 47–90 | MR | Zbl

[23] D. Francoeur, P.-H. Leemann, Subgroup induction property for branch groups, arXiv: 2011.13310

[24] M. Hall, Jr., “Coset representations in free groups”, Trans. Amer. Math. Soc., 67:2 (1949), 421–432 | DOI | MR | Zbl

[25] P. Scott, “Subgroups of surface groups are almost geometric”, J. London Math. Soc. (2), 17:3 (1978), 555–565 | DOI | MR | Zbl

[26] A. M. Brunner, R. G. Burns, D. Solitar, “The subgroup separability of free products of two free groups with cyclic amalgamation”, Contributions to group theory, Contemp. Math., 33, Amer. Math. Soc., Providence, RI, 1984, 90–115 | DOI | MR | Zbl

[27] H. Wilton, “Hall's theorem for limit groups”, Geom. Funct. Anal., 18:1 (2008), 271–303 | DOI | MR | Zbl

[28] L. Ribes, P. A. Zalesskii, “On the profinite topology on a free group”, Bull. London Math. Soc., 25:1 (1993), 37–43 | DOI | MR | Zbl

[29] D. F. Holt, W. Plesken, Perfect groups, With an appendix by W. Hanrath, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1989, xii+364 pp. | MR | Zbl

[30] D. McCarthy, “Infinite groups whose proper quotient groups are finite. I”, Comm. Pure Appl. Math., 21:6 (1968), 545–562 | DOI | MR | Zbl

[31] H. Fitting, “Beiträge zur theorie der gruppen endlicher ordnung”, Jahresber. Dtsch. Math.-Ver., 48 (1938), 77–141 | Zbl

[32] L. Bartholdi, R. I. Grigorchuk, Z. Šuniḱ, “Branch groups”, Handbook of algebra, v. 3, Elsevier/North-Holland, Amsterdam, 2003, 989–1112 | DOI | MR | Zbl

[33] E. Goursat, “Sur les substitutions orthogonales et les divisions régulières de l'espace”, Ann. Sci. École Norm. Sup. (3), 6 (1889), 9–102 | DOI | MR | Zbl

[34] L. Bartholdi, O. Siegenthaler, P. Zalesskii, “The congruence subgroup problem for branch groups”, Israel J. Math., 187 (2012), 419–450 | DOI | MR | Zbl