Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_5_a3, author = {S. K. Vodopyanov and A. O. Tomilov}, title = {Functional and analytic properties of~a~class of~mappings in quasi-conformal analysis}, journal = {Izvestiya. Mathematics }, pages = {883--931}, publisher = {mathdoc}, volume = {85}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a3/} }
TY - JOUR AU - S. K. Vodopyanov AU - A. O. Tomilov TI - Functional and analytic properties of~a~class of~mappings in quasi-conformal analysis JO - Izvestiya. Mathematics PY - 2021 SP - 883 EP - 931 VL - 85 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a3/ LA - en ID - IM2_2021_85_5_a3 ER -
S. K. Vodopyanov; A. O. Tomilov. Functional and analytic properties of~a~class of~mappings in quasi-conformal analysis. Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 883-931. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a3/
[1] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991, viii+286 pp. | DOI | MR | MR | Zbl | Zbl
[2] V. G. Mazya, Klassy mnozhestv i teoremy vlozheniya funktsionalnykh klassov. Nekotorye problemy teorii ellipticheskikh operatorov, Avtoreferat diss. ... kand. fiz.-matem. nauk, Izd-vo Leningr. un-ta, L., 1961
[3] Yu. G. Reshetnyak, Space mappings with bounded distortion, Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989, xvi+362 pp. | DOI | MR | MR | Zbl | Zbl
[4] G. D. Mostow, “Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms”, Inst. Hautes Études Sci. Publ. Math., 34:1 (1968), 53–104 | DOI | MR | Zbl
[5] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer–Verlag, Berlin, 1971, xiv+144 pp. | DOI | MR | Zbl
[6] F. W. Gehring, “Lipschitz mappings and $p$-capacity of rings in $n$-space”, Advances in the theory of Riemann surfaces (Stony Brook, NY, 1969), Ann. of Math. Studies, 66, Princeton Univ. Press, Princeton, NJ, 1971, 175–193 | DOI | MR | Zbl
[7] S. K. Vodop'yanov, V. M. Gol'dshtein, “Lattice isomorphisms of the spaces $W_n^1$ and quasiconformal mappings”, Siberian Math. J., 16:2 (1975), 174–189 | DOI | MR | Zbl
[8] H. M. Reimann, “Über harmonische Kapazität und quasikonforme Abbildungen in Raum”, Comment. Math. Helv., 44 (1969), 284–307 | MR | Zbl
[9] J. Lelong-Ferrand, “Étude d'une classe d'applications liées à des homomorphismes d'algébres de fonctions, et généralisant les quasi conformes”, Duke Math. J., 40 (1973), 163–186 | DOI | MR | Zbl
[10] S. P. Ponomarev, “The $N^{-1}$-property of maps and Luzin's condition $(N)$”, Math. Notes, 58:3 (1995), 960–965 | DOI | MR | Zbl
[11] S. K. Vodopyanov, Formula Teilora i funktsionalnye prostranstva, Uchebnoe posobie, NGU, Novosibirsk, 1988, 96 pp. | MR | Zbl
[12] S. K. Vodopyanov, “Mappings of homogeneous groups and imbeddings of functional spaces”, Siberian Math. J., 30:5 (1989), 685–698 | DOI | MR | Zbl
[13] S. K. Vodopyanov, “Vesovye prostranstva Soboleva i teoriya otobrazhenii”, Vsesoyuznaya matematicheskaya shkola “Teoriya potentsiala”, Tez. dokl. (Katsiveli, 1991), In-t matem. AN USCP, Kiev, 1991, 7
[14] S. K. Vodopyanov, Geometricheskie aspekty prostranstv obobschenno-differentsiruemykh funktsii, Avtoreferat diss. ... dokt. fiz.-matem. nauk, Izd-vo In-ta matem. im. S. L. Soboleva SO RAN, Novosibirsk, 1992, 38 pp.
[15] P. Koskela, P. Pankka, Yi Ru-Ya Zhang, Ahlfors reflection theorem for $p$-morphisms, arXiv: 1912.09200v2
[16] S. Saks, Theory of the integral, Monogr. Mat., 7, 2nd rev. ed., G. E. Stechert, Warszawa–New York, 1937, vi+347 pp. | MR | Zbl
[17] P. R. Halmos, Measure theory, D. Van Nostrand Company, Inc., New York, NY, 1950, xi+304 pp. | MR | MR | Zbl
[18] T. Rado, P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Grundlehren Math. Wiss., LXXV, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955, vii+442 pp. | DOI | MR | Zbl
[19] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | MR | MR | Zbl | Zbl
[20] V. Gol'dshtein, L. Gurov, A. Romanov, “Homeomorphisms that induce monomorphisms of Sobolev spaces”, Israel J. Math., 91:1-3 (1995), 31–60 | DOI | MR | Zbl
[21] M. Troyanov, S. Vodop'yanov, “Liouville type theorems for mappings with bounded (co)-distortion”, Ann. Inst. Fourier (Grenoble), 52:6 (2002), 1753–1784 | DOI | MR | Zbl
[22] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | DOI | MR | MR | Zbl | Zbl
[23] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1993, vi+363 pp. | MR | Zbl
[24] A. D. Ukhlov, “On mappings generating the embeddings of Sobolev spaces”, Siberian Math. J., 34:1 (1993), 165–171 | DOI | MR | Zbl
[25] S. K. Vodop'yanov, A. D. Ukhlov, “Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups”, Siberian Math. J., 39:4 (1998), 665–682 | DOI | MR | Zbl
[26] S. K. Vodop'yanov, A. D. Ukhlov, “Superposition operators in Sobolev spaces”, Russian Math. (Iz. VUZ), 46:10 (2002), 9–31 | MR | Zbl
[27] S. K. Vodop'yanov, “Regularity of mappings inverse to Sobolev mappings”, Sb. Math., 203:10 (2012), 1383–1410 | DOI | DOI | MR | Zbl
[28] A. Molchanova, S. Vodopyanov, “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Partial Differential Equations, 59:1 (2020), 17, 25 pp. | DOI | MR | Zbl
[29] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009, xii+367 pp. | DOI | MR | Zbl
[30] S. K. Vodopyanov, “Operatory kompozitsii vesovykh prostranstva Soboleva i teoriya $\mathscr Q_p$-gomeomorfizmov”, Dokl. RAN, 494:5 (2020), 21–25
[31] S. K. Vodopyanov, A. D. Ukhlov, “Operatory superpozitsii v prostranstvakh Lebega i differentsiruemost kvaziadditivnykh funktsii mnozhestva”, Vladikavk. matem. zhurn., 4:1 (2002), 11–33 | MR | Zbl
[32] S. K. Vodopyanov, “The regularity of inverses to Sobolev mappings and the theory of $\mathcal Q_{q,p}$-homeomorphisms”, Siberian Math. J., 61:6 (2020), 1002–1038 | DOI | DOI | MR | Zbl
[33] Yu. G. Reshetnyak, “Some geometrical properties of functions and mappings with generalized derivatives”, Siberian Math. J., 7:4 (1966), 704–732 | DOI | MR | Zbl
[34] B. Bojarski, T. Iwaniec, “Analytical foundations of the theory of quasiconformal mappings in ${R}^{n}$”, Ann. Acad. Sci. Fenn. Ser. A I Math., 8:2 (1983), 257–324 | DOI | MR | Zbl
[35] J. Malý, O. Martio, “Lusin's condition $(N)$ and mappings of the class $W^{1, n}$”, J. Reine Angew. Math., 1995:458 (1995), 19–36 | DOI | MR | Zbl
[36] S. K. Vodop'yanov, “Differentiability of maps of Carnot groups of Sobolev classes”, Sb. Math., 194:6 (2003), 857–877 | DOI | DOI | MR | Zbl
[37] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992, viii+268 pp. | MR | Zbl
[38] P. Hajłasz, “Change of variables formula under minimal assumptions”, Colloq. Math., 64:1 (1993), 93–101 | DOI | MR | Zbl
[39] S. K. Vodopyanov, “Differentiability of mappings of the Sobolev space $W^1_{n-1}$ with conditions on the distortion function”, Siberian Math. J., 59:6 (2018), 983–1005 | DOI | DOI | MR | Zbl
[40] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Math. Notes, 28, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1982, xii+285 pp. | MR | Zbl
[41] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl
[42] Yu. A. Brudnyi, B. D. Kotlyar, “A problem in combinatorial geometry”, Siberian Math. J., 11:5 (1970), 870–871 | DOI | MR | Zbl
[43] S. K. Vodop'yanov, “On the analytic and geometric properties of mappings in the theory of $\mathscr Q_{q,p}$-homeomorphisms”, Math. Notes, 108:6 (2020), 889–894 | DOI | DOI | MR | Zbl
[44] S. K. Vodopyanov, “Basics of the quasiconformal analysis of a two-index scale of spatial mappings”, Siberian Math. J., 59:5 (2018), 805–834 | DOI | DOI | MR | Zbl
[45] A. N. Baykin, S. K. Vodop'yanov, “Capacity estimates, Liouville's theorem, and singularity removal for mappings with bounded $(p,q)$-distortion”, Siberian Math. J., 56:2 (2015), 237–261 | DOI | MR | Zbl
[46] A. Ukhlov, S. K. Vodopyanov, “Mappings associated with weighted Sobolev spaces”, Complex analysis and dynamical systems III, Contemp. Math., 455, Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI, 2008, 369–382 | DOI | MR | Zbl
[47] S. K. Vodop'yanov, “Spaces of differential forms and maps with controlled distortion”, Izv. Math., 74:4 (2010), 663–689 | DOI | DOI | MR | Zbl
[48] V. I. Kruglikov, “Capacity of condensers and spatial mappings quasiconformal in the mean”, Math. USSR-Sb., 58:1 (1987), 185–205 | DOI | MR | Zbl
[49] S. K. Vodopyanov, “Ob ekvivalentnosti dvukh podkhodov k zadacham kvazikonformnogo analiza”, Sib. matem. zhurn., 62:5 (2021) (to appear)
[50] R. R. Salimov, E. A. Sevost'yanov, “$ACL$ and differentiability of open discrete ring $(p, Q)$-mappings”, Mat. Stud., 35:1 (2011), 28–36 | MR | Zbl
[51] V. I. Ryazanov, E. A. Sevost'yanov, “Equicontinuity of mean quasiconformal mappings”, Siberian Math. J., 52:3 (2011), 524–536 | DOI | MR | Zbl
[52] R. R. Salimov, “ACL and differentiability of a generalization of quasi-conformal maps”, Izv. Math., 72:5 (2008), 977–984 | DOI | DOI | MR | Zbl
[53] R. Salimov, “$ACL$ and differentiability of $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 295–301 | MR | Zbl
[54] R. R. Salimov, E. A. Sevost'yanov, “The theory of shell-based $Q$-mappings in geometric function theory”, Sb. Math., 201:6 (2010), 909–934 | DOI | DOI | MR | Zbl
[55] E. A. Sevost'yanov, S. A. Skvortsov, On behavior of homeomorphisms with inverse modulus conditions, arXiv: 1801.01808v9
[56] R. R. Salimov, E. A. Sevost'yanov, “On local properties of spatial generalized quasi-isometries”, Math. Notes, 101:4 (2017), 704–717 | DOI | DOI | MR | Zbl
[57] R. Salimov, “On $Q$-homeomorphisms with respect to $p$-modulus”, Ann. Univ. Buchar. Math. Ser., 2(LX):2 (2011), 207–213 | MR | Zbl
[58] S. K. Vodop'yanov, “Monotone functions and quasiconformal mappings on Carnot groups”, Siberian Math. J., 37:6 (1996), 1113–1136 | DOI | MR | Zbl