Functional and analytic properties of~a~class of~mappings in quasi-conformal analysis
Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 883-931

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a two-index scale $\mathcal Q_{q,p}$, $n-1$, of homeomorphisms of spatial domains in $\mathbb R^n$, the geometric description of which is determined by the control of the behaviour of the $q$-capacity of condensers in the target space in terms of the weighted $p$-capacity of condensers in the source space. We obtain an equivalent functional and analytic description of $\mathcal Q_{q,p}$ based on the properties of the composition operator (from weighted Sobolev spaces to non-weighted ones) induced by the inverses of the mappings in $\mathcal Q_{q,p}$. When $q=p=n$, the class of mappings $\mathcal Q_{n,n}$ coincides with the set of so-called $Q$-homeomorphisms which have been studied extensively in the last 25 years.
Keywords: quasi-conformal analysis, Sobolev space, composition operator, capacity and modulus of a condenser.
@article{IM2_2021_85_5_a3,
     author = {S. K. Vodopyanov and A. O. Tomilov},
     title = {Functional and analytic properties of~a~class of~mappings in quasi-conformal analysis},
     journal = {Izvestiya. Mathematics },
     pages = {883--931},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a3/}
}
TY  - JOUR
AU  - S. K. Vodopyanov
AU  - A. O. Tomilov
TI  - Functional and analytic properties of~a~class of~mappings in quasi-conformal analysis
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 883
EP  - 931
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a3/
LA  - en
ID  - IM2_2021_85_5_a3
ER  - 
%0 Journal Article
%A S. K. Vodopyanov
%A A. O. Tomilov
%T Functional and analytic properties of~a~class of~mappings in quasi-conformal analysis
%J Izvestiya. Mathematics 
%D 2021
%P 883-931
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a3/
%G en
%F IM2_2021_85_5_a3
S. K. Vodopyanov; A. O. Tomilov. Functional and analytic properties of~a~class of~mappings in quasi-conformal analysis. Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 883-931. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a3/