The Calder\'on construction for a~couple of\/ global Morrey spaces
Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 833-851.

Voir la notice de l'article provenant de la source Math-Net.Ru

We employ a new approach to show that the Calderón construction for a couple of global Morrey spaces coincides with the Morrey space with appropriate parameters only under rather strong assumptions on the couples of ideal spaces that parameterize the original Morrey spaces. We show that, in the case of classical examples of global Morrey spaces, these assumptions are necessary and sufficient. Applying a well-known reduction, we use the Calderón construction for a couple of global Morrey spaces to describe the spaces given by the complex interpolation method and also to prove new interpolation theorems for global Morrey spaces.
Keywords: Banach ideal space, complex interpolation methods, global Morrey spaces, interpolation theorems on global Morrey spaces.
Mots-clés : Calderón construction
@article{IM2_2021_85_5_a1,
     author = {E. I. Berezhnoi},
     title = {The {Calder\'on} construction for a~couple of\/ global {Morrey} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {833--851},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a1/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - The Calder\'on construction for a~couple of\/ global Morrey spaces
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 833
EP  - 851
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a1/
LA  - en
ID  - IM2_2021_85_5_a1
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T The Calder\'on construction for a~couple of\/ global Morrey spaces
%J Izvestiya. Mathematics 
%D 2021
%P 833-851
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a1/
%G en
%F IM2_2021_85_5_a1
E. I. Berezhnoi. The Calder\'on construction for a~couple of\/ global Morrey spaces. Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 833-851. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a1/

[1] A. P. Calderón, “Intermediate spaces and interpolation, the complex method”, Studia Math., 24:2 (1964), 113–190 | DOI | MR | Zbl

[2] C. B. Morrey, Jr., “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR | Zbl

[3] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl

[4] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl

[5] P. G. Lemarié-Rieusset, “Multipliers and Morrey spaces”, Potential Anal., 38:3 (2013), 741–752 | DOI | MR | Zbl

[6] P. G. Lemarié-Rieusset, “Erratum to: Multipliers and Morrey spaces”, Potential Anal., 41:4 (2014), 1359–1362 | DOI | MR | Zbl

[7] O. Blasco, A. Ruiz, L. Vega, “Non interpolation in Morrey–Campanato and block spaces”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:1 (1999), 31–40 | MR | Zbl

[8] A. Ruiz, L. Vega, “Corrigenda to “Unique continuation for Schrödinger operators” and a remark on interpolation of Morrey spaces”, Publ. Mat., 39:2 (1995), 405–411 | DOI | MR | Zbl

[9] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford–Elmsford, N.Y., 1982, xiv+589 pp. | MR | MR | Zbl

[10] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Ergeb. Math. Grenzgeb., II, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl

[11] L. Maligranda, Orlicz spaces and interpolation, Sem. Mat., 5, Univ. Estad. Campinas, Dep. de Matemática, Campinas, SP, 1989, iii+206 pp. | MR | Zbl

[12] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. I, Ergeb. Math. Grenzgeb., 92, Sequence spaces, Springer-Verlag, Berlin–New York, 1977, xiii+188 pp. | MR | Zbl

[13] Yu. A. Brudnyi, N. Ya. Krugliak, Interpolation functors and interpolation spaces, v. I, North-Holland Math. Library, 47, North-Holland Publishing Co., Amsterdam, 1991, xvi+718 pp. | MR | Zbl

[14] E. I. Berezhnoi, “Geometrical properties of the space $\varphi(X,Y)$”, Funct. Anal. Appl., 18:1 (1984), 48–50 | DOI | MR | Zbl

[15] E. I. Berezhnoĭ, L. Maligranda, “Representation of Banach ideal spaces and factorization of operators”, Canad. J. Math., 57:5 (2005), 897–940 | DOI | MR | Zbl

[16] V. A. Shestakov, “On complex interpolation in Banach spaces of measurable functions”, Vestn. Leningr. Univ., Math., 7 (1979), 363–369 | Zbl

[17] G. Ja. Lozanovskii, “On a complex method of interpolation in Banach lattices of measurable functions”, Soviet Math. Dokl., 17 (1976), 51–54 | MR | Zbl

[18] E. I. Berezhnoi, “A discrete version of local Morrey spaces”, Izv. Math., 81:1 (2017), 1–28 | DOI | DOI | MR | Zbl

[19] D. I. Hakim, Y. Sawano, “Interpolation of generalized Morrey spaces”, Rev. Math. Complut., 29:2 (2016), 295–340 | DOI | MR | Zbl

[20] Wen Yuan, W. Sickel, DaChun Yang, “Interpolation of Morrey–Campanato and related smoothness spaces”, Sci. China Math., 58:9 (2015), 1835–1908 | DOI | MR | Zbl