Solubility of unsteady equations of the three-dimensional motion of two-component
Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 755-812.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider equations for the three-dimensional unsteady motion of mixtures of viscous compressible heat-conducting fluids in the multi-velocity approach. We prove the existence, globally in time and the input data, of a generalized (dissipative) solution of the initial-boundary value problem corresponding to flows in a bounded domain.
Keywords: global existence theorem, unsteady boundary-value problem, viscous compressible heat-conducting fluid, homogeneous mixture with multiple velocities, multidimensional flow.
@article{IM2_2021_85_4_a6,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Solubility of unsteady equations of the three-dimensional motion of two-component},
     journal = {Izvestiya. Mathematics },
     pages = {755--812},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a6/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Solubility of unsteady equations of the three-dimensional motion of two-component
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 755
EP  - 812
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a6/
LA  - en
ID  - IM2_2021_85_4_a6
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Solubility of unsteady equations of the three-dimensional motion of two-component
%J Izvestiya. Mathematics 
%D 2021
%P 755-812
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a6/
%G en
%F IM2_2021_85_4_a6
A. E. Mamontov; D. A. Prokudin. Solubility of unsteady equations of the three-dimensional motion of two-component. Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 755-812. http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a6/

[1] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Ser. Math. Appl., 26, Oxford Univ. Press, Oxford, 2004, xii+212 pp. | DOI | MR | Zbl

[2] E. Feireisl, T. G. Karper, M. Pokorny, Mathematical theory of compressible viscous fluids. Analysis and numerics, Adv. Math. Fluid Mech., Birkhäuser/Springer, Cham, 2016, xii+186 pp. | DOI | MR | Zbl

[3] E. Feireisl, A. Novotný, Singular limits in thermodynamics of viscous fluids, Adv. Math. Fluid Mech., 2nd ed., Birkhäuser/Springer, Cham, 2017, xlii+524 pp. | DOI | MR | Zbl

[4] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods Appl. Anal., 20:2 (2013), 179–196 | DOI | MR | Zbl

[5] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 464 pp.

[6] K. R. Rajagopal, L. Tao, Mechanics of mixtures, Ser. Adv. Math. Appl. Sci., 35, World Sci. Publ., River Edge, NJ, 1995, xii+195 pp. | DOI | MR | Zbl

[7] J. Frehse, S. Goj, J. Málek, “On a Stokes-like system for mixtures of fluids”, SIAM J. Math. Anal., 36:4 (2005), 1259–1281 | DOI | MR | Zbl

[8] J. Frehse, S. Goj, J. Málek, “A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum”, Appl. Math., 50:6 (2005), 527–541 | DOI | MR | Zbl

[9] J. Frehse, W. Weigant, “On quasi-stationary models of mixtures of compressible fluids”, Appl. Math., 53:4 (2008), 319–345 | DOI | MR | Zbl

[10] A. E. Mamontov, D. A. Prokudin, “Solubility of unsteady equations of multi-component viscous compressible fluids”, Izv. Math., 82:1 (2018), 140–185 | DOI | DOI | MR | Zbl

[11] A. E. Mamontov, D. A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat-conducting fluids”, Izv. Math., 78:3 (2014), 554–579 | DOI | DOI | MR | Zbl

[12] A. V. Kazhikhov, A. N. Petrov, “Korrektnost nachalno-kraevoi zadachi dlya modelnoi sistemy uravnenii mnogokomponentnoi smesi”, Dinamika sploshnoi sredy, 1978, no. 35, 61–73

[13] A. E. Mamontov, D. A. Prokudin, “Local solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids”, J. Math. Sci. (N.Y.), 231:2 (2018), 227–242 | DOI | DOI | MR | Zbl

[14] A. E. Mamontov, D. A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, J. Math. Fluid Mech., 21:1 (2019), 9, 10 pp. | DOI | MR | Zbl

[15] A. N. Petrov, “Korrektnost nachalno-kraevykh zadach dlya odnomernykh uravnenii vzaimopronikayuschego dvizheniya sovershennykh gazov”, Dinamika sploshnoi sredy, 56 (1982), 105–121

[16] D. Bresch, V. Giovangigli, E. Zatorska, “Two-velocity hydrodynamics in fluid mechanics: Part I. Well posedness for zero Mach number systems”, J. Math. Pures Appl. (9), 104:4 (2015), 762–800 | DOI | MR | Zbl

[17] D. Bresch, B. Desjardins, E. Zatorska, “Two-velocity hydrodynamics in fluid mechanics: Part II. Existence of global $\kappa$-entropy solutions to the compressible Navier–Stokes systems with degenerate viscosities”, J. Math. Pures Appl. (9), 104:4 (2015), 801–836 | DOI | MR | Zbl

[18] E. Feireisl, “On weak solutions to a diffuse interface model of a binary mixture of compressible fluids”, Discrete Contin. Dyn. Syst. Ser. S, 9:1 (2016), 173–183 | DOI | MR | Zbl

[19] E. Feireisl, H. Petzeltová, K. Trivisa, “Multicomponent reactive flows: global-in-time existence for large data”, Commun. Pure Appl. Anal., 7:5 (2008), 1017–1047 | DOI | MR | Zbl

[20] V. Giovangigli, M. Pokorný, E. Zatorska, “On the steady flow of reactive gaseous mixture”, Analysis (Berlin), 35:4 (2015), 319–341 | DOI | MR | Zbl

[21] P. B. Mucha, M. Pokorný, E. Zatorska, “Heat-conducting, compressible mixtures with multicomponent diffusion: construction of a weak solution”, SIAM J. Math. Anal., 47:5 (2015), 3747–3797 | DOI | MR | Zbl

[22] P. B. Mucha, M. Pokorný, E. Zatorska, “Chemically reacting mixtures in terms of degenerated parabolic setting”, J. Math. Phys., 54:7 (2013), 071501, 17 pp. | DOI | MR | Zbl

[23] E. Zatorska, “On the flow of chemically reacting gaseous mixture”, J. Differential Equations, 253:12 (2012), 3471–3500 | DOI | MR | Zbl

[24] O. Kreml, V. Mácha, Š. Nečasová, A. Wróblewska-Kamińska, “Weak solutions to the full Navier–Stokes–Fourier system with slip boundary conditions in time dependent domains”, J. Math. Pures Appl. (9), 109 (2018), 67–92 | DOI | MR | Zbl

[25] A. E. Mamontov, D. A. Prokudin, “Globalnye otsenki i razreshimost regulyarizovannoi zadachi o trekhmernom nestatsionarnom dvizhenii vyazkoi szhimaemoi teploprovodnoi mnogokomponentnoi zhidkosti”, Sib. elektron. matem. izv., 16 (2019), 547–590 | DOI | MR | Zbl

[26] A. E. Mamontov, D. A. Prokudin, “Predelnyi perekhod v galerkinskikh priblizheniyakh regulyarizovannoi zadachi o trekhmernom nestatsionarnom dvizhenii vyazkoi szhimaemoi teploprovodnoi mnogokomponentnoi zhidkosti”, Sib. elektron. matem. izv., 17 (2020), 227–259 | DOI | MR | Zbl

[27] S. Demoulini, D. M. A. Stuart, A. E. Tzavaras, “Weak–strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics”, Arch. Ration. Mech. Anal., 205:3 (2012), 927–961 | DOI | MR | Zbl

[28] E. Feireisl, A. Novotny, Yongzhong Sun, “Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamic system in unbounded domains”, Discrete Contin. Dyn. Syst., 34:1 (2014), 121–143 | DOI | MR | Zbl

[29] E. Feireisl, Yong Lu, E. Süli, “Dissipative weak solutions to compressible Navier–Stokes–Fokker–Planck systems with variable viscosity coeffcients”, J. Math. Anal. App., 443:1 (2016), 322–351 | DOI | MR | Zbl

[30] Yongzhong Sun, Chao Wang, Zhifei Zhang, “A Beale–Kato–Majda criterion for three dimensional compressible viscous heat-conductive flows”, Arch. Ration. Mech. Anal., 201 (2011), 727–742 | DOI | MR | Zbl

[31] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Ser. Math. Appl., 27, Oxford Univ. Press, Oxford, 2004, xx+506 pp. | MR | Zbl

[32] E. Feireisl, A. Novotný, Singular limits in thermodynamics of viscous fluids, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2009, xxxvi+382 pp. | DOI | MR | Zbl

[33] R. R. Coifman, Y. Meyer, “On commutators of singular integrals and bilinear singular integrals”, Trans. Amer. Math. Soc., 212 (1975), 315–331 | DOI | MR | Zbl

[34] L. Tartar, “Compensated compactness and applications to partial differential equations”, Nonlinear analysis and mechanics: Heriot–Watt symposium, v. IV, Res. Notes in Math., 39, Pitman, Boston, MA–London, 1979, 136–212 | MR | Zbl

[35] P.-L. Lions, Mathematical topics in fluid mechanics, v. 2, Oxford Lecture Ser. Math. Appl., 10, Compressible models, The Clarendon Press, Oxford Univ. Press, New York, 1998, xiv+348 pp. | MR | Zbl

[36] E. B. Bykhovskii, N. V. Smirnov, “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno summiruemykh po zadannoi oblasti, i operatorakh vektornogo analiza”, Matematicheskie voprosy gidrodinamiki i magnitnoi gidrodinamiki dlya vyazkoi neszhimaemoi zhidkosti, Sbornik rabot, Tr. MIAN SSSR, 59, Izd-vo AN SSSR, M.–L., 1960, 5–36 | MR | Zbl