On critical exponents for weak solutions of the Cauchy problem for a~non-linear equation of composite type
Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 705-744.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for a model partial differential equation of third order with non-linearity of the form $|u|^q$, where $u=u(x,t)$ for $x\in\mathbb{R}^3$ and $t\geqslant 0$. We construct a fundamental solution for the linear part of the equation and use it to obtain analogues of Green's third formula for elliptic operators, first in a bounded domain and then in unbounded domains. We derive an integral equation for classical solutions of the Cauchy problem. A separate study of this equation yields that it has a unique inextensible-in-time solution in weighted spaces of bounded and continuous functions. We prove that every solution of the integral equation is a local-in-time weak solution of the Cauchy problem provided that $q>3$. When $q\in(1,3]$, we use Pokhozhaev's non-linear capacity method to show that the Cauchy problem has no local-in-time weak solutions for a large class of initial functions. When $q\in(3,4]$, this method enables us to prove that the Cauchy problem has no global-in-time weak solutions for a large class of initial functions.
Keywords: non-linear equations of Sobolev type, blow-up, local solubility, non-linear capacity, bounds for the blow-up time.
@article{IM2_2021_85_4_a4,
     author = {M. O. Korpusov and A. K. Matveeva},
     title = {On critical exponents for weak solutions of the {Cauchy} problem for a~non-linear equation of composite type},
     journal = {Izvestiya. Mathematics },
     pages = {705--744},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a4/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. K. Matveeva
TI  - On critical exponents for weak solutions of the Cauchy problem for a~non-linear equation of composite type
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 705
EP  - 744
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a4/
LA  - en
ID  - IM2_2021_85_4_a4
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. K. Matveeva
%T On critical exponents for weak solutions of the Cauchy problem for a~non-linear equation of composite type
%J Izvestiya. Mathematics 
%D 2021
%P 705-744
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a4/
%G en
%F IM2_2021_85_4_a4
M. O. Korpusov; A. K. Matveeva. On critical exponents for weak solutions of the Cauchy problem for a~non-linear equation of composite type. Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 705-744. http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a4/

[1] G. A. Sviridyuk, “On the general theory of operator semigroups”, Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[2] S. A. Zagrebina, “Nachalno-konechnaya zadacha dlya uravnenii sobolevskogo tipa s silno $(L,p)$-radialnym operatorom”, Matem. zametki SVFU, 19:2 (2012), 39–48 | Zbl

[3] A. A. Zamyshlyaeva, G. A. Sviridyuk, “Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:4 (2016), 5–16 | DOI | Zbl

[4] B. V. Kapitonov, “Potential theory for the equation of small oscillations of a rotating fluid”, Math. USSR-Sb., 37:4 (1980), 559–579 | DOI | MR | Zbl

[5] S. A. Gabov, A. G. Sveshnikov, Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990, 344 pp. | MR | Zbl

[6] S. A. Gabov, Novye zadachi matematicheskoi teorii voln, Fizmatlit, M., 1998, 448 pp. | Zbl

[7] Yu. D. Pletner, “Fundamental solutions of Sobolev-type operators and some initial boundary-value problems”, Comput. Math. Math. Phys., 32:12 (1992), 1715–1728 | MR | Zbl

[8] È. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl

[9] E. Galakhov, “Some nonexistence results for quasilinear elliptic problems”, J. Math. Anal. Appl., 252:1 (2000), 256–277 | DOI | MR | Zbl

[10] E. I. Galakhov, O. A. Salieva, “Ob otsutstvii neotritsatelnykh monotonnykh reshenii dlya nekotorykh koertsitivnykh neravenstv v poluprostranstve”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, no. 4, RUDN, M., 2017, 573–585 | DOI | MR

[11] M. O. Korpusov, “Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type”, Izv. Math., 79:5 (2015), 955–1012 | DOI | DOI | MR | Zbl

[12] M. O. Korpusov, “Solution blowup for nonlinear equations of the Khokhlov–Zabolotskaya type”, Theoret. and Math. Phys., 194:3 (2018), 347–359 | DOI | DOI | MR | Zbl

[13] M. O. Korpusov, A. V. Ovchinnikov, A. A. Panin, “Instantaneous blow-up versus local solvability of solutions to the Cauchy problem for the equation of a semiconductor in a magnetic field”, Math. Methods Appl. Sci., 41:17 (2018), 8070–8099 | DOI | MR | Zbl

[14] A. G. Bagdoev, V. I. Erofeev, A. V. Shekoyan, Lineinye i nelineinye volny v dispergiruyuschikh sploshnykh sredakh, Fizmatlit, M., 2009, 320 pp.

[15] V. S. Vladimirov, Equations of mathematical physics, Pure Appl. Math., 3, Marcel Dekker, Inc., New York, 1971, vi+418 pp. | MR | MR | Zbl | Zbl

[16] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl

[17] A. Friedman, Partial differential equations of parabolic type, Englewood Cliffs, N.J., Prentice-Hall, Inc., 1964, xiv+347 pp. | MR | Zbl | Zbl

[18] A. A. Panin, “On local solvability and blow-up of solutions of an abstract nonlinear Volterra integral equation”, Math. Notes, 97:6 (2015), 892–908 | DOI | DOI | MR | Zbl