On the Newton polyhedron of a~Jacobian pair
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 457-467.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and describe the Newton polyhedron related to a “minimal” counterexample to the Jacobian conjecture. This description allows us to obtain a sharper estimate for the geometric degree of the polynomial mapping given by a Jacobian pair and to give a new proof in the case of the Abhyankar's two characteristic pairs.
Keywords: Newton polytopes.
Mots-clés : Jacobian conjecture
@article{IM2_2021_85_3_a7,
     author = {L. G. Makar-Limanov},
     title = {On the {Newton} polyhedron of  {a~Jacobian} pair},
     journal = {Izvestiya. Mathematics },
     pages = {457--467},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a7/}
}
TY  - JOUR
AU  - L. G. Makar-Limanov
TI  - On the Newton polyhedron of  a~Jacobian pair
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 457
EP  - 467
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a7/
LA  - en
ID  - IM2_2021_85_3_a7
ER  - 
%0 Journal Article
%A L. G. Makar-Limanov
%T On the Newton polyhedron of  a~Jacobian pair
%J Izvestiya. Mathematics 
%D 2021
%P 457-467
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a7/
%G en
%F IM2_2021_85_3_a7
L. G. Makar-Limanov. On the Newton polyhedron of  a~Jacobian pair. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 457-467. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a7/

[1] O.-H. Keller, “Ganze Cremona-Transformationen”, Monatsh. Math. Phys., 47:1 (1939), 299–306 | DOI | MR | Zbl

[2] S. S. Abhyankar, Lectures on expansion techniques in algebraic geometry, Tata Inst. Fund. Res. Lectures on Math. and Phys., 57, Tata Inst. Fund. Res., Bombay, 1977, iv+168 pp. | MR | Zbl

[3] S. S. Abhyankar, “Some remarks on the Jacobian question”, With notes by M. van der Put and W. Heinzer. Updated by A. Sathaye, Proc. Indian Acad. Sci. Math. Sci., 104:3 (1994), 515–542 | DOI | MR | Zbl

[4] H. Appelgate, H. Onishi, “The Jacobian conjecture in two variables”, J. Pure Appl. Algebra, 37:3 (1985), 215–227 | DOI | MR | Zbl

[5] C. Valqui, J. A. Guccione, J. J. Guccione, “On the shape of possible counterexamples to the Jacobian conjecture”, J. Algebra, 471 (2017), 13–74 | DOI | MR | Zbl

[6] R. C. Heitmann, “On the Jacobian conjecture”, J. Pure Appl. Algebra, 64:1 (1990), 35–72 | DOI | MR | Zbl

[7] A. Joseph, “The Weyl algebra – semisimple and nilpotent elements”, Amer. J. Math., 97:3 (1975), 597–615 | DOI | MR | Zbl

[8] J. Lang, “Jacobian pairs. II”, J. Pure Appl. Algebra, 74:1 (1991), 61–71 | DOI | MR | Zbl

[9] J. H. McKay, Stuart Sui Sheng Wang, “A note on the Jacobian condition and two points at infinity”, Proc. Amer. Math. Soc., 111:1 (1991), 35–43 | DOI | MR | Zbl

[10] T. T. Moh, “On the Jacobian conjecture and the configurations of roots”, J. Reine Angew. Math., 340 (1983), 140–212 | DOI | MR | Zbl

[11] M. Nagata, “Two-dimensional Jacobian conjecture.”, Algebra and topology 1988 (Taejŏn, 1988), Korea Inst. Tech., Taejŏn, 1988, 77–98 | MR | Zbl

[12] M. Nagata, “Some remarks on the two-dimensional Jacobian conjecture”, Chinese J. Math., 17:1 (1989), 1–7 | MR | Zbl

[13] A. Nowicki, Y. Nakai, “On Appelgate–Onishi's lemmas”, J. Pure Appl. Algebra, 51:3 (1988), 305–310 | DOI | MR | Zbl

[14] A. Nowicki, Y. Nakai, “Correction to “On Appelgate–Onishi's lemmas””, J. Pure Appl. Algebra, 58:1 (1989), 101 | DOI | MR | Zbl

[15] M. Oka, “On the boundary obstructions to the Jacobian problem”, Kodai Math. J., 6:3 (1983), 419–433 | DOI | MR | Zbl

[16] P. Cassou-Nogués, “Newton trees at infinity of algebraic curves”, Affine algebraic geometry, The Russell Festschrift, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 1–19 | DOI | MR | Zbl

[17] L. Makar-Limanov, “On the Newton polygon of a Jacobian mate”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 469–476 | DOI | MR | Zbl

[18] B. L. van der Varden, Algebra, v. 1, Nauka, M., 1976 ; B. L. van der Waerden, Algebra, v. I, Heidelberger Taschenbücher, 12, 7. Aufl., Springer-Verlag, Berlin–New York, 1966, xi+271 pp. ; B. L. van der Waerden, Algebra, Based in part on lectures by E. Artin and E. Noether, т. 1, Springer-Verlag, New York, 1991, xiv+265 с. | MR | Zbl | MR | Zbl | MR | Zbl

[19] I. Newton, “De methodis serierum et fluxionum”, The mathematical papers of Isaac Newton, v. 3, Cambridge Univ. Press, Cambridge, London–New York, 43–71 | MR | Zbl

[20] B. R. Peskin, D. R. Richman, “A method to compute minimal polynomials”, SIAM J. Algebraic Discrete Methods, 6:2 (1985), 292–299 | DOI | MR | Zbl

[21] D. R. Richman, “On the computation of minimal polynomials”, J. Algebra, 103:1 (1986), 1–17 | DOI | MR | Zbl

[22] L. Makar-Limanov, “A new proof of the Abhyankar–Moh–Suzuki theorem via a new algorithm for the polynomial dependence”, J. Algebra Appl., 14:9 (2015), 1540001, 12 pp. | DOI | MR | Zbl

[23] Yitang Zhang, The Jacobian conjecture and the degree of field extension, Thesis (Ph.D.), Purdue Univ., 1991, 24 pp. | MR

[24] A. V. Domrina, “On four-sheeted polynomial mappings of $\mathbb{C}^2$. The general case”, Math. Notes, 65:3-4 (1999), 386–389 | DOI | DOI | MR | Zbl

[25] A. V. Domrina, “On four-sheeted polynomial mappings of $\mathbb{C}^2$. II. The general case”, Izv. Math., 64:1 (2000), 1–33 | DOI | DOI | MR | Zbl

[26] A. V. Domrina, S. Yu. Orevkov, “On four-sheeted polynomial mappings of $\mathbb{C}^2$. I. The case of an irreducible ramification curve”, Math. Notes, 64:6 (1998), 732–744 | DOI | DOI | MR | Zbl

[27] S. Yu. Orevkov, “On three-sheeted polynomial mappings of $\mathbf{C}^2$”, Math. USSR-Izv., 29:3 (1987), 587–596 | DOI | MR | Zbl

[28] I. Sigray, Jacobian trees and their applications, Thesis (Ph.D.), Eötvös Loránd Univ. (ELTE), Budapest, 2008, 66 pp.

[29] H. .{Z}oła̧dek, “An application of Newton–Puiseux charts to the Jacobian problem”, Topology, 47:6 (2008), 431–469 | DOI | MR | Zbl