Proper holomorphic maps of bounded two-dimensional Reinhardt domains.~I
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 388-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of proper holomorphic maps with multiplicity higher than one from bounded Reinhardt domains in $\mathbb C^2$ onto two-dimensional complex manifolds is described.
Keywords: Reinhardt domain, proper holomorphic map, holomorphic correspondence, spherical real hypersurface.
@article{IM2_2021_85_3_a4,
     author = {N. G. Kruzhilin},
     title = {Proper holomorphic maps of  bounded two-dimensional {Reinhardt} {domains.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {388--406},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a4/}
}
TY  - JOUR
AU  - N. G. Kruzhilin
TI  - Proper holomorphic maps of  bounded two-dimensional Reinhardt domains.~I
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 388
EP  - 406
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a4/
LA  - en
ID  - IM2_2021_85_3_a4
ER  - 
%0 Journal Article
%A N. G. Kruzhilin
%T Proper holomorphic maps of  bounded two-dimensional Reinhardt domains.~I
%J Izvestiya. Mathematics 
%D 2021
%P 388-406
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a4/
%G en
%F IM2_2021_85_3_a4
N. G. Kruzhilin. Proper holomorphic maps of  bounded two-dimensional Reinhardt domains.~I. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 388-406. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a4/

[1] K. Reinhardt, “Über Abbildungen durch analytische Funktionen zweier Veranderlichen”, Math. Ann., 83:3-4 (1921), 211–255 | DOI | MR | Zbl

[2] N. G. Kruzhilin, “Holomorphic automorphisms of hyperbolic Reinhardt domains”, Math. USSR-Izv., 32:1 (1989), 15–38 | DOI | MR | Zbl

[3] S. Shimizu, “Automorphisms of bounded Reinhardt domains”, Japan J. Math. (N.S.), 15:2 (1989), 385–414 | DOI | MR | Zbl

[4] P. Thullen, “Zu den Abbildungen durch analytische Funktionen mehrerer komplexer Veränderlichen Die Invarianz des Mittelpunktes von Kreiskörpern”, Math. Ann., 104:1 (1931), 244–259 | DOI | MR | Zbl

[5] P. A. Soldatkin, “Holomorphic equivalence of Reinhardt domains in $\mathbb C^2$”, Izv. Math., 66:6 (2002), 1271–1304 | DOI | DOI | MR | Zbl

[6] D. E. Barrett, “Holomorphic equivalence and proper mapping of bounded Reinhardt domains not containing the origin”, Comment. Math. Helv., 59:4 (1984), 550–564 | MR | Zbl

[7] E. Bedford, J. Dadok, “Proper holomorphic mappings and real reflection groups”, J. Reine Angew. Math., 1985:361 (1985), 1–82 | DOI | MR | Zbl

[8] F. Berteloot, S. Pinchuk, “Proper holomorphic mappings between bounded complete Reinhardt domains in $\mathbf C^2$”, Math. Z., 219:3 (1995), 343–356 | DOI | MR | Zbl

[9] G. Dini, A. Selvaggi Primicerio, “Proper holomorphic mappings between generalized pseudoellipsoids”, Ann. Mat. Pura Appl. (4), 158 (1991), 219–229 | DOI | MR | Zbl

[10] Kang-Tae Kim, M. Landucci, A. F. Spiro, “Factorization of proper holomorphic mappings through Thullen domains”, Pacific J. Math., 189:2 (1999), 293–310 | DOI | MR | Zbl

[11] M. Landicci, A. Spiro, “Proper holomorphic maps between complete Reinhardt domains in $\mathbb C^2$”, Complex Variables Theory Appl., 29:1 (1996), 9–28 | DOI | MR | Zbl

[12] A. Isaev, N. G. Kruzhilin, “Proper holomorphic maps between Reinhardt domains in $\mathbb C^2$”, Michigan Math. J., 54:1 (2006), 33–64 | DOI | MR | Zbl

[13] A. Spiro, “Classification of proper holomorphic maps between Reinhardt domains in $\mathbb C^2$”, Math. Z., 227:1 (1998), 27–44 | DOI | MR | Zbl

[14] N. G. Kruzhilin, “A generalization of Kerner's theorem on proper maps”, Russian Math. Surveys, 65:6 (2010), 1181–1182 | DOI | DOI | MR | Zbl

[15] S. R. Bell, “The Bergman kernel function and proper holomorphic mappings”, Trans. Amer. Math. Soc., 270:2 (1982), 685–691 | DOI | MR | Zbl

[16] M. Landucci, “Proper holomorphic mappings between some nonsmooth domains”, Ann. Mat. Pura Appl. (4), 155 (1989), 193–203 | DOI | MR | Zbl

[17] E. Bedford, S. Bell, “Extension of proper holomorphic mappings past the boundary”, Manuscripta Math., 50 (1985), 1–10 | DOI | MR | Zbl

[18] E. Bedford, S. Bell, “Boundary behavior of proper holomorphic correspondences”, Math. Ann., 272:4 (1985), 505–518 | DOI | MR | Zbl

[19] A. V. Loboda, “Each holomorphically homogeneous tube in $C^2$ has an affine-homogeneous base”, Siberian Math. J., 42:6 (2001), 1111–1114 | DOI | MR | Zbl

[20] J. Dadok, P. Yang, “Automorphisms of tube domains and spherical tube hypersurfaces”, Amer. J. Math., 107:4 (1985), 999–1013 | DOI | MR | Zbl

[21] M. Newman, Integral matrices, Pure Appl. Math., 45, Academic Press, New York–London, 1972, xvii+224 pp. | MR | Zbl