Holomorphic mappings between~domains with low boundary regularity
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 536-546.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the boundary regularity of proper holomorphic mappings between strictly pseudoconvex domains with boundaries of low regularity.
Keywords: strictly pseudoconvex domain, proper holomorphic mapping, boundary regularity.
@article{IM2_2021_85_3_a13,
     author = {A. B. Sukhov},
     title = {Holomorphic mappings between~domains with low boundary regularity},
     journal = {Izvestiya. Mathematics },
     pages = {536--546},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a13/}
}
TY  - JOUR
AU  - A. B. Sukhov
TI  - Holomorphic mappings between~domains with low boundary regularity
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 536
EP  - 546
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a13/
LA  - en
ID  - IM2_2021_85_3_a13
ER  - 
%0 Journal Article
%A A. B. Sukhov
%T Holomorphic mappings between~domains with low boundary regularity
%J Izvestiya. Mathematics 
%D 2021
%P 536-546
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a13/
%G en
%F IM2_2021_85_3_a13
A. B. Sukhov. Holomorphic mappings between~domains with low boundary regularity. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 536-546. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a13/

[1] Ch. Fefferman, “The Bergman kernel and biholomorphic mappings of pseudoconvex domains”, Invent. Math., 26 (1974), 1–65 | DOI | MR | Zbl

[2] S. I. Pinchuk, S. V. Khasanov, “Asymptotically holomorphic functions and their applications”, Math. USSR-Sb., 62:2 (1989), 541–550 | DOI | MR | Zbl

[3] Yu. V. Khurumov, “Granichnaya gladkost sobstvennykh golomorfnykh otobrazhenii strogo psevdovypuklykh oblastei”, Matem. zametki, 48:6 (1990), 149–150 | MR | Zbl

[4] S. I. Pinchuk, “On proper holomorphic mappings of strictly pseudoconvex domains”, Siberian Math. J., 15:4 (1974), 644–649 | DOI | MR | Zbl

[5] E. M. Chirka, B. Coupet, A. B. Sukhov, “On boundary regularity of analytic discs”, Michigan Math. J., 46:2 (1999), 271–279 | DOI | MR | Zbl

[6] N. Sibony, “A class of hyperbolic manifolds”, Recent developments in several complex variables (Princeton Univ., 1979), Ann. of Math. Stud., 100, Princeton Univ. Press, Princeton, NJ, 1981, 357–372 | DOI | MR | Zbl

[7] S. I. Pinchuk, “A boundary uniqueness theorem for holomorphic functions of several complex variables”, Math. Notes, 15:2 (1974), 116–120 | DOI | MR | Zbl

[8] A. Sukhov, “Pluripolar sets, real submanifolds and pseudoholomorphic discs”, J. Aust. Math. Soc., 109:2 (2020), 270–288 | DOI | MR | Zbl

[9] F. R. Harvey, R. O. Wells, Jr., “Zero sets of non-negative strictly plurisubharmonic functions”, Math. Ann., 201 (1973), 165–170 | DOI | MR | Zbl

[10] E. M. Chirka, “Regularity of the boundaries of analytic sets”, Math. USSR-Sb., 45:3 (1983), 291–335 | DOI | MR | Zbl

[11] B. Chabat, Introduction à l'analyse complexe, v. 2, Traduit Russe Math., Mir, Moscow, 1990, 420 pp. | MR | MR | Zbl | Zbl

[12] L. Lempert, “La métrique de Kobayashi et la représentation des domains sur la boule”, Bull. Soc. Math. France, 109:4 (1981), 427–474 | DOI | MR | Zbl

[13] B. Coupet, H. Gaussier, A. Sukhov, “Riemann maps in almost complex manifolds”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2:4 (2003), 761–785 | MR | Zbl

[14] A. Spiro, A. Sukhov, “An existence theorem for stationary discs in almost complex manifold”, J. Math. Anal. Appl., 327:1 (2007), 269–286 | DOI | MR | Zbl