Holomorphically homogeneous~CR-manifolds and their model surfaces
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 529-535.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the model surface of a germ of a holomorphically homogeneous CR-manifold is holomorphically homogeneous. We also obtain restrictions on the multiplicities in the Bloom–Graham type of a germ of a holomorphically homogeneous CR-manifold.
Keywords: CR-manifold, holomorphically homogeneous manifold, Bloom–Graham type.
@article{IM2_2021_85_3_a12,
     author = {M. A. Stepanova},
     title = {Holomorphically {homogeneous~CR-manifolds} and their model surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {529--535},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a12/}
}
TY  - JOUR
AU  - M. A. Stepanova
TI  - Holomorphically homogeneous~CR-manifolds and their model surfaces
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 529
EP  - 535
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a12/
LA  - en
ID  - IM2_2021_85_3_a12
ER  - 
%0 Journal Article
%A M. A. Stepanova
%T Holomorphically homogeneous~CR-manifolds and their model surfaces
%J Izvestiya. Mathematics 
%D 2021
%P 529-535
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a12/
%G en
%F IM2_2021_85_3_a12
M. A. Stepanova. Holomorphically homogeneous~CR-manifolds and their model surfaces. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 529-535. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a12/

[1] V. K. Beloshapka, “Real submanifolds in complex space: polynomial models, automorphisms, and classification problems”, Russian Math. Surveys, 57:1 (2002), 1–41 | DOI | DOI | MR | Zbl

[2] V. K. Beloshapka, “Universal models for real submanifolds”, Math. Notes, 75:4 (2004), 475–488 | DOI | DOI | MR | Zbl

[3] H. Poincaré, “Les fonctions analytiques de deux variables et la représentation conforme”, Rend. Circ. Mat. Palermo, 23 (1907), 185–220 | DOI | Zbl

[4] V. K. Beloshapka, “$CR$-manifolds of finite Bloom–Graham type: the model surface method”, Russ. J. Math. Phys., 27:2 (2020), 155–174 | DOI | MR | Zbl

[5] T. Bloom, I. Graham, “On ‘type’ conditions for generic real submanifolds of $\mathbb C^n$”, Invent. Math., 40:3 (1977), 217–243 | DOI | MR | Zbl

[6] S. S. Chern, J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR | MR | Zbl | Zbl