Simple solutions of the Burgers and Hopf equations
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 343-350.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all solutions of the Burgers equation of analytic complexity not exceeding $1$. It turns out that all such solutions fall into four families of dimensions not exceeding $3$ that are represented by elementary functions. An example of a family of solutions of the Burgers equation of complexity $2$ is given. A similar problem is also solved for the Hopf equation. It turns out that all solutions to the Hopf equation of complexity $1$ form a two-parameter family of fractional-linear functions which coincides with one of the families of solutions of the Burgers equation.
Keywords: analytic complexity, special functions, analytic spectrum.
@article{IM2_2021_85_3_a1,
     author = {V. K. Beloshapka},
     title = {Simple solutions of the {Burgers} and {Hopf} equations},
     journal = {Izvestiya. Mathematics },
     pages = {343--350},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a1/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Simple solutions of the Burgers and Hopf equations
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 343
EP  - 350
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a1/
LA  - en
ID  - IM2_2021_85_3_a1
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Simple solutions of the Burgers and Hopf equations
%J Izvestiya. Mathematics 
%D 2021
%P 343-350
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a1/
%G en
%F IM2_2021_85_3_a1
V. K. Beloshapka. Simple solutions of the Burgers and Hopf equations. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 343-350. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a1/

[1] A. Ostrowski, “Über Dirichletsche Reihen und algebraische Differentialgleichungen”, Math. Z., 8:3-4 (1920), 241–298 | DOI | MR | Zbl

[2] A. G. Vitushkin, “On Hilbert's thirteenth problem and related questions”, Russian Math. Surveys, 59:1 (2004), 11–25 | DOI | DOI | MR | Zbl

[3] V. K. Beloshapka, “Analytic complexity of functions of two variables”, Russ. J. Math. Phys, 14:3 (2007), 243–249 | DOI | MR | Zbl

[4] V. K. Beloshapka, “Stabilizer of a function in the Gage group”, Russ. J. Math. Phys, 24:2 (2017), 148–152 | DOI | MR | Zbl

[5] V. K. Beloshapka, “Simple solutions of three equations of mathematical physics”, Trans. Moscow Math. Soc., 2018, 187–200 | DOI | MR | Zbl

[6] M. A. Stepanova, “Analytic complexity of differential algebraic functions”, Sb. Math., 210:12 (2019), 1774–1787 | DOI | DOI | MR | Zbl