Exact value of the exponent of~convergence of~the~singular~integral in Tarry's problem for~homogeneous polynomials of degree~$n$ in two variables
Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 332-340

Voir la notice de l'article provenant de la source Math-Net.Ru

Jabbarov [1] obtained the exact value of the exponent of convergence of the singular integral in Tarry's problem for homogeneous polynomials of degree $2$. We extend this result to the case of polynomials of degree $n$.
Keywords: oscillatory integrals, singular integral, Tarry's problem.
@article{IM2_2021_85_2_a6,
     author = {M. A. Chahkiev},
     title = {Exact value of the exponent of~convergence of~the~singular~integral in {Tarry's} problem for~homogeneous polynomials of degree~$n$ in two variables},
     journal = {Izvestiya. Mathematics },
     pages = {332--340},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a6/}
}
TY  - JOUR
AU  - M. A. Chahkiev
TI  - Exact value of the exponent of~convergence of~the~singular~integral in Tarry's problem for~homogeneous polynomials of degree~$n$ in two variables
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 332
EP  - 340
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a6/
LA  - en
ID  - IM2_2021_85_2_a6
ER  - 
%0 Journal Article
%A M. A. Chahkiev
%T Exact value of the exponent of~convergence of~the~singular~integral in Tarry's problem for~homogeneous polynomials of degree~$n$ in two variables
%J Izvestiya. Mathematics 
%D 2021
%P 332-340
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a6/
%G en
%F IM2_2021_85_2_a6
M. A. Chahkiev. Exact value of the exponent of~convergence of~the~singular~integral in Tarry's problem for~homogeneous polynomials of degree~$n$ in two variables. Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 332-340. http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a6/