On a~real caustic of type $E_6$
Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 279-305

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the manifold of non-singular points of a stable real caustic germ of type $E_6$ and the manifolds of points of transversal intersection of its smooth branches consist only of contractible connected components. We also calculate the number of these components.
Keywords: Lagrangian map, caustic, singularities of types $A$, multisingularities, adjacency index.
Mots-clés : $D$, $E$
@article{IM2_2021_85_2_a4,
     author = {V. D. Sedykh},
     title = {On a~real caustic of type $E_6$},
     journal = {Izvestiya. Mathematics },
     pages = {279--305},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a4/}
}
TY  - JOUR
AU  - V. D. Sedykh
TI  - On a~real caustic of type $E_6$
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 279
EP  - 305
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a4/
LA  - en
ID  - IM2_2021_85_2_a4
ER  - 
%0 Journal Article
%A V. D. Sedykh
%T On a~real caustic of type $E_6$
%J Izvestiya. Mathematics 
%D 2021
%P 279-305
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a4/
%G en
%F IM2_2021_85_2_a4
V. D. Sedykh. On a~real caustic of type $E_6$. Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 279-305. http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a4/