On a~class of Anosov diffeomorphisms on the infinite-dimensional torus
Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 177-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a quite natural class of diffeomorphisms $G$ on $\mathbb{T}^{\infty}$, where $\mathbb{T}^{\infty}$ is the infinite-dimensional torus (the direct product of countably many circles endowed with the topology of uniform coordinatewise convergence). The diffeomorphisms under consideration can be represented as the sums of a linear hyperbolic map and a periodic additional term. We find some constructive sufficient conditions, which imply that any $G$ in our class is hyperbolic, that is, an Anosov diffeomorphism on $\mathbb{T}^{\infty}$. Moreover, under these conditions we prove the following properties standard in the hyperbolic theory: the existence of stable and unstable invariant foliations, the topological conjugacy to a linear hyperbolic automorphism of the torus and the structural stability of $G$.
Keywords: diffeomorphism, hyperbolicity, infinite-dimensional torus, topological conjugacy, structural stability.
Mots-clés : invariant foliations
@article{IM2_2021_85_2_a0,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {On a~class of {Anosov} diffeomorphisms on the infinite-dimensional torus},
     journal = {Izvestiya. Mathematics },
     pages = {177--227},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a0/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - On a~class of Anosov diffeomorphisms on the infinite-dimensional torus
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 177
EP  - 227
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a0/
LA  - en
ID  - IM2_2021_85_2_a0
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T On a~class of Anosov diffeomorphisms on the infinite-dimensional torus
%J Izvestiya. Mathematics 
%D 2021
%P 177-227
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a0/
%G en
%F IM2_2021_85_2_a0
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. On a~class of Anosov diffeomorphisms on the infinite-dimensional torus. Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 177-227. http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a0/

[1] D. Ruelle, “Large volume limit of the distribution of characteristic exponents in turbulence”, Comm. Math. Phys., 87:2 (1982), 287–302 | DOI | MR | Zbl

[2] R. Mañé, Ergodic theory and differentiable dynamics, Transl. from the Portuguese, Ergeb. Math. Grenzgeb. (3), 8, Springer-Verlag, Berlin, 1987, xii+317 pp. | DOI | MR | Zbl

[3] P. Thieullen, “Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems”, J. Dynam. Differential Equations, 4:1 (1992), 127–159 | DOI | MR | Zbl

[4] H. M. Hastings, “On expansive homeomorphisms of the infinite torus”, The structure of attractors in dynamical systems (North Dakota State Univ., Fargo, N.D., 1977), Lecture Notes in Math., 668, Springer, Berlin, 1978, 142–149 | DOI | MR | Zbl

[5] R. Mãné, “Expansive homeomorphisms and topological dimension”, Trans. Amer. Math. Soc., 252 (1979), 313–319 | DOI | MR | Zbl

[6] D. V. Anosov, “Geodesic flows on closed Riemannian manifolds of negative curvature”, Proc. Steklov Inst. Math., 90 (1967), 1–235 | MR | Zbl

[7] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[8] B. Hasselblatt, A. Katok, A first course in dynamics with a panorama of recent developments, Cambridge Univ. Press, Cambridge, 2003, x+424 pp. | DOI | MR | Zbl

[9] S. Newhouse, J. Palis, “Bifurcations of Morse–Smale dynamical systems”, Dynamical systems (Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 303–366 | MR | Zbl

[10] Ya. G. Sinaĭ, “The stochasticity of dynamical systems”, Selecta Math. Soviet., 1, no. 1, Birkhäuser, Boston, MA, 1981, 100–119 | MR | Zbl

[11] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “The annulus principle in the existence problem for a hyperbolic strange attractor”, Sb. Math., 207:4 (2016), 490–518 | DOI | DOI | MR | Zbl

[12] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Hyperbolic annulus principle”, Differ. Equ., 53:3 (2017), 281–301 | DOI | DOI | MR | Zbl

[13] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On a version of the hyperbolic annulus principle”, Differ. Equ., 54:8 (2018), 1000–1025 | DOI | DOI | MR | Zbl

[14] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “Sufficient condition for the hyperbolicity of mappings of the torus”, Differ. Equ., 53:4 (2017), 457–478 | DOI | DOI | MR | Zbl

[15] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of qualitative theory in nonlinear dynamics, v. I, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 4, World Sci. Publ., River Edge, NJ, 1998, xxiv+392 pp. | DOI | MR | Zbl

[16] S. Banach, S. Mazur, “Über mehrdeutige stetige Abbildungen”, Studia Math., 5 (1934), 174–178 | DOI | Zbl

[17] R. Plastock, “Homeomorphisms between Banach spaces”, Trans. Amer. Math. Soc., 200 (1974), 169–183 | DOI | MR | Zbl

[18] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “On the hyperbolicity of toral endomorphisms”, Math. Notes, 105:2 (2019), 236–250 | DOI | DOI | MR | Zbl

[19] R. L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Stud. Nonlinearity, 2nd ed., Addison-Wesley Publishing Co., Redwood City, CA, 1989, xviii+336 pp. | MR | Zbl

[20] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, “On Devaney's definition of chaos”, Amer. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR | Zbl

[21] J. D. Farmer, E. Ott, J. A. Yorke, “The dimension of chaotic attractors”, Phys. D, 7:1-3 (1983), 153–180 | DOI | MR | Zbl