On a~class of Anosov diffeomorphisms on the infinite-dimensional torus
Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 177-227

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a quite natural class of diffeomorphisms $G$ on $\mathbb{T}^{\infty}$, where $\mathbb{T}^{\infty}$ is the infinite-dimensional torus (the direct product of countably many circles endowed with the topology of uniform coordinatewise convergence). The diffeomorphisms under consideration can be represented as the sums of a linear hyperbolic map and a periodic additional term. We find some constructive sufficient conditions, which imply that any $G$ in our class is hyperbolic, that is, an Anosov diffeomorphism on $\mathbb{T}^{\infty}$. Moreover, under these conditions we prove the following properties standard in the hyperbolic theory: the existence of stable and unstable invariant foliations, the topological conjugacy to a linear hyperbolic automorphism of the torus and the structural stability of $G$.
Keywords: diffeomorphism, hyperbolicity, infinite-dimensional torus, topological conjugacy, structural stability.
Mots-clés : invariant foliations
@article{IM2_2021_85_2_a0,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {On a~class of {Anosov} diffeomorphisms on the infinite-dimensional torus},
     journal = {Izvestiya. Mathematics },
     pages = {177--227},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a0/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - On a~class of Anosov diffeomorphisms on the infinite-dimensional torus
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 177
EP  - 227
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a0/
LA  - en
ID  - IM2_2021_85_2_a0
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T On a~class of Anosov diffeomorphisms on the infinite-dimensional torus
%J Izvestiya. Mathematics 
%D 2021
%P 177-227
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a0/
%G en
%F IM2_2021_85_2_a0
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. On a~class of Anosov diffeomorphisms on the infinite-dimensional torus. Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 177-227. http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a0/