Kolmogorov widths of~intersections of~weighted Sobolev classes on an~interval with conditions on the zeroth and first derivatives
Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 1-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we obtain order estimates for the Kolmogorov widths of the intersection of weighted Sobolev classes with conditions on the first and zeroth derivatives; the weights have power-law form.
Keywords: widths, intersections of function classes, weighted Sobolev classes.
@article{IM2_2021_85_1_a0,
     author = {A. A. Vasil'eva},
     title = {Kolmogorov widths of~intersections of~weighted {Sobolev} classes on an~interval with conditions on the zeroth and first derivatives},
     journal = {Izvestiya. Mathematics },
     pages = {1--23},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a0/}
}
TY  - JOUR
AU  - A. A. Vasil'eva
TI  - Kolmogorov widths of~intersections of~weighted Sobolev classes on an~interval with conditions on the zeroth and first derivatives
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 1
EP  - 23
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a0/
LA  - en
ID  - IM2_2021_85_1_a0
ER  - 
%0 Journal Article
%A A. A. Vasil'eva
%T Kolmogorov widths of~intersections of~weighted Sobolev classes on an~interval with conditions on the zeroth and first derivatives
%J Izvestiya. Mathematics 
%D 2021
%P 1-23
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a0/
%G en
%F IM2_2021_85_1_a0
A. A. Vasil'eva. Kolmogorov widths of~intersections of~weighted Sobolev classes on an~interval with conditions on the zeroth and first derivatives. Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 1-23. http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a0/

[1] E. N. Lomakina, V. D. Stepanov, “Asymptotic estimates for the approximation and entropy numbers of a one-weight Riemann–Liouville operator”, Siberian Adv. Math., 17:1 (2007), 1–36 | DOI | MR | Zbl

[2] D. E. Edmunds, J. Lang, “Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case”, Math. Nachr., 279:7 (2006), 727–742 | DOI | MR | Zbl

[3] V. N. Konovalov, D. Leviatan, “Kolmogorov and linear widths of weighted Sobolev-type classes on a finite interval”, Anal. Math., 28:4 (2002), 251–278 | DOI | MR | Zbl

[4] J. Lang, “Improved estimates for the approximation numbers of Hardy-type operators”, J. Approx. Theory, 121:1 (2003), 61–70 | DOI | MR | Zbl

[5] M. A. Lifshits, W. Linde, Approximation and entropy numbers of Volterra operators with application to Brownian motion, Mem. Amer. Math. Soc., 157, no. 745, Amer. Math. Soc., Providence, RI, 2002, viii+87 pp. | DOI | MR | Zbl

[6] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48:1 (1993), 103–116 | DOI | MR | Zbl

[7] V. D. Stepanov, E. P. Ushakova, “On integral operators with variable limits of integration”, Proc. Steklov Inst. Math., 232 (2001), 290–309 | MR | Zbl

[8] P. I. Lizorkin, M. Otelbaev, “Imbedding theorems and compactness for spaces of Sobolev type with weights”, Math. USSR-Sb., 36:3 (1980), 331–349 | DOI | MR | Zbl

[9] P. I. Lizorkin, M. Otelbaev, “Imbedding theorems and compactness for spaces of Sobolev type with weights. II”, Math. USSR-Sb., 40:1 (1981), 51–77 | DOI | MR | Zbl

[10] P. I. Lizorkin, M. O. Otelbaev, “Estimates of approximate numbers of the imbedding operators for spaces of Sobolev type with weights”, Proc. Steklov Inst. Math., 170 (1987), 245–266 | MR | Zbl

[11] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. ; North-Holland Math. Library, 18, North-Holland Publishing Co., Amsterdam–New York, 1978, 528 pp. | MR | MR | MR | Zbl | Zbl | Zbl

[12] H. Triebel, “Interpolation properties of $\varepsilon$-entropy and diameters. Geometric characteristics of imbedding for function spaces of Sobolev–Besov type”, Math. USSR-Sb., 27:1 (1975), 23–37 | DOI | MR | Zbl

[13] I. V. Bojkov, “Approximation of some classes of functions by local splines”, Comput. Math. Math. Phys., 38:1 (1998), 21–29 | MR | Zbl

[14] K. T. Mynbaev, M. O. Otelbaev, Vesovye funktsionalnye prostranstva i spektr differentsialnykh operatorov, Nauka, M., 1988, 286 pp. | MR | Zbl

[15] M. S. Aitenova, L. K. Kusainova, “Ob asimptotike raspredeleniya approksimativnykh chisel vlozhenii vesovykh klassov Soboleva. I”, Matem. zhurn., 2:1(3) (2002), 3–9 (electronic) | MR | Zbl

[16] M. S. Aitenova, L. K. Kusainova, “Ob asimptotike raspredeleniya approksimativnykh chisel vlozhenii vesovykh klassov Soboleva. II”, Matem. zhurn., 2:2(4) (2002), 7–14 (electronic) | MR | Zbl

[17] A. A. Vasil'eva, Kolmogorov widths of weighted Sobolev classes on a multi-dimensional domain with conditions on the derivatives of order $r$ and zero, 2020, arXiv: 2004.06013v2

[18] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 304 pp. | MR

[19] V. M. Tikhomirov, “Approximation theory”, Analysis. II. Convex analysis and approximation theory, Encyclopaedia Math. Sci., 14, Springer-Verlag, Berlin, 1990, 93–243 | DOI | MR | MR | Zbl | Zbl

[20] A. Pinkus, $n$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985, x+291 pp. | DOI | MR | Zbl

[21] A. Pietsch, “$s$-numbers of operators in Banach spaces”, Studia Math., 51 (1974), 201–223 | DOI | MR | Zbl

[22] M. L. Stesin, “Aleksandrov diameters of finite-dimensional sets and classes of smooth functions”, Soviet Math. Dokl., 16 (1975), 252–256 | MR | Zbl

[23] R. S. Ismagilov, “Diameters of sets in normed linear spaces and the approximation of functions by trigonometric polynomials”, Russian Math. Surveys, 29:3 (1974), 169–186 | DOI | MR | Zbl

[24] E. D. Gluskin, “Norms of random matrices and widths of finite-dimensional sets”, Math. USSR-Sb., 48:1 (1984), 173–182 | DOI | MR | Zbl

[25] B. S. Kašin, “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333 | DOI | MR | Zbl

[26] V. E. Maiorov, “Diskretizatsiya zadachi o poperechnikakh”, UMN, 30:6(186) (1975), 179–180 | MR | Zbl

[27] A. Yu. Garnaev, E. D. Gluskin, “On widths of the Euclidean ball”, Soviet Math. Dokl., 30 (1984), 200–204 | MR | Zbl

[28] B. S. Kashin, “O poperechnikakh oktaedrov”, UMN, 30:4(184) (1975), 251–252 | MR | Zbl

[29] È. M. Galeev, “The Kolmogorov diameter of the intersection of classes of periodic functions and of finite-dimensional sets”, Math. Notes, 29:5 (1981), 382–388 | DOI | MR | Zbl

[30] E. M. Galeev, “Kolmogorov $n$-width of some finite-dimensional sets in a mixed measure”, Math. Notes, 58:1 (1995), 774–778 | DOI | MR | Zbl

[31] È. M. Galeev, “Kolmogorov widths of classes of periodic functions of one and several variables”, Math. USSR-Izv., 36:2 (1991), 435–448 | DOI | MR | Zbl

[32] E. M. Galeev, “Poperechniki funktsionalnykh klassov i konechnomernykh mnozhestv”, Vladikavk. matem. zhurn., 13:2 (2011), 3–14 | MR | Zbl

[33] E. D. Gluskin, “Peresecheniya kuba s oktaedrom plokho approksimiruyutsya podprostranstvami maloi razmernosti”, Priblizhenie funktsii spetsialnymi klassami operatorov, Mezhvuz. sb. nauch. tr., Min. pros. RSFSR, Vologodskii gos. ped. in-t, Vologda, 1987, 35–41 | MR | Zbl

[34] A. D. Izaak, “Kolmogorov widths in finite-dimensional spaces with mixed norms”, Math. Notes, 55:1 (1994), 30–36 | DOI | MR | Zbl

[35] A. D. Izaak, “Widths of Hölder–Nikol'skii classes and finite-dimensional subsets in spaces with mixed norm”, Math. Notes, 59:3 (1996), 328–330 | DOI | DOI | MR | Zbl

[36] Yu. V. Malykhin, K. S. Ryutin, “The product of octahedra is badly approximated in the $\ell_{2,1}$-metric”, Math. Notes, 101:1 (2017), 94–99 | DOI | DOI | MR | Zbl