Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_5_a1, author = {V. V. Gorbatsevich}, title = {On the topology of~non-compact simply~connected homogeneous manifolds}, journal = {Izvestiya. Mathematics }, pages = {845--861}, publisher = {mathdoc}, volume = {84}, number = {5}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a1/} }
V. V. Gorbatsevich. On the topology of~non-compact simply~connected homogeneous manifolds. Izvestiya. Mathematics , Tome 84 (2020) no. 5, pp. 845-861. http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a1/
[1] G. D. Mostow, “The extensibility of local Lie groups of transformations and groups on surfaces”, Ann. of Math. (2), 52:3 (1950), 606–636 | DOI | MR | Zbl
[2] V. V. Gorbatsevich, “Three-dimensional homogeneous spaces”, Siberian Math. J., 18:2 (1977), 200–210 | DOI | MR | Zbl
[3] V. V. Gorbatsevich, A. L. Onishchik, “Lie transformation groups”, Lie groups and Lie algebras, v. I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993, 95–235 | MR | MR | Zbl | Zbl
[4] G. D. Mostow, “On covariant fiberings of Klein spaces”, Amer. J. Math., 77:2 (1955), 247–278 | DOI | MR | Zbl
[5] G. D. Mostow, “On covariant fiberings of Klein spaces. II”, Amer. J. Math., 84:3 (1962), 466–474 | DOI | MR | Zbl
[6] F. I. Karpelevich, “O rassloenii odnorodnykh prostranstv”, UMN, 11:3(69) (1956), 131–138 | MR | Zbl
[7] A. L. Onishchik, Topology of transitive transformation groups, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1994, xvi+300 pp. | MR | MR | Zbl | Zbl
[8] T. Kaga, T. Watabe, “Simply connected 6-manifolds of large degree of symmetry”, Sci. Rep. Niigata Univ. Ser. A, 1975, no. 12, 15–32 | MR | Zbl
[9] S. Klaus, Einfach-zusammenhängende kompakte homogene Räume bis zur dimension Neun, Diploma thesis, Mainz Univ., Mainz, 1988, 97 pp. | DOI
[10] D. B. Fuks, V. A. Rokhlin, Beginner's course in topology. Geometric chapters, Universitext, Springer-Verlag, Berlin, 1984, xi+519 pp. | MR | MR | Zbl | Zbl
[11] V. V. Gorbatsevich, “On a fibration of compact homogeneous spaces”, Trans. Mosc. Math. Soc., 1983, no. 1, 129–157 | MR | Zbl
[12] V. V. Gorbacevič, “On a class of decompositions of semisimple Lie groups and algebras”, Math. USSR-Sb., 24:2 (1974), 287–297 | DOI | MR | Zbl
[13] C. Chevalley, Theory of Lie groups, v. I, Princeton Math. Ser., 8, Princeton Univ. Press, Princeton, NJ, 1946, ix+217 pp. | MR | Zbl
[14] M. A. Naimark, A. I. Stern, Theory of group representations, Grundlehren Math. Wiss., 246, Springer-Verlag, New York, 1982, ix+568 pp. | MR | MR | Zbl | Zbl
[15] R. W. Brockett, H. J. Sussmann, “Tangent bundles of homogeneous spaces are homogeneous spaces”, Proc. Amer. Math. Soc., 35:2 (1972), 550–551 | DOI | MR | Zbl
[16] V. V. Gorbatsevich, “O pochti odnorodnykh prostranstvakh”, Geometricheskie metody v zadachakh analiza i algebry, 1, Izd-vo YarGU, Yaroslavl, 1978, 43–66 | MR | Zbl
[17] W. Browder, J. Levine, G. R. Livesay, “Finding a boundary for an open manifold”, Amer. J. Math., 87:4 (1965), 1017–1028 | DOI | MR | Zbl
[18] J. Milnor, “Whitehead torsion”, Bull. Amer. Math. Soc., 72:3 (1966), 358–426 | DOI | MR | Zbl
[19] B. Hughes, A. A. Ranicki, Ends of complexes, Cambridge Tracts in Math., 123, Reprint of 1996 ed., Cambridge Univ. Press, Cambridge, 2008, xxv+353 pp. | MR | Zbl
[20] W. Massey, “On the cohomology ring of a sphere bundle”, J. Math. Mech., 7:2 (1958), 265–289 | DOI | MR | Zbl
[21] P. L. Antonelly, D. Burghelea, P. J. Kahn, “The non-finite homotopy type of some diffeomorphism groups”, Topology, 11 (1972), 1–49 | DOI | MR | Zbl
[22] R. Mandelbaum, Chetyrekhmernaya topologiya, Mir, M., 1981, 288 pp. | MR | Zbl
[23] A. Dold, H. Whitney, “Classification of oriented sphere bundles over a 4-complex”, Ann. of Math. (2), 69:3 (1959), 667–677 | DOI | MR | Zbl
[24] D. Barden, “Simply connected five-manifolds”, Ann. of Math. (2), 82:3 (1965), 365–385 | DOI | MR | Zbl