Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_4_a8, author = {Kh. A. Khachatryan}, title = {Existence and uniqueness of~solution of~a certain boundary-value problem for a~convolution integral equation with monotone non-linearity}, journal = {Izvestiya. Mathematics }, pages = {807--815}, publisher = {mathdoc}, volume = {84}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a8/} }
TY - JOUR AU - Kh. A. Khachatryan TI - Existence and uniqueness of~solution of~a certain boundary-value problem for a~convolution integral equation with monotone non-linearity JO - Izvestiya. Mathematics PY - 2020 SP - 807 EP - 815 VL - 84 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a8/ LA - en ID - IM2_2020_84_4_a8 ER -
%0 Journal Article %A Kh. A. Khachatryan %T Existence and uniqueness of~solution of~a certain boundary-value problem for a~convolution integral equation with monotone non-linearity %J Izvestiya. Mathematics %D 2020 %P 807-815 %V 84 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a8/ %G en %F IM2_2020_84_4_a8
Kh. A. Khachatryan. Existence and uniqueness of~solution of~a certain boundary-value problem for a~convolution integral equation with monotone non-linearity. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 807-815. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a8/
[1] V. S. Vladimirov, “Nonlinear equations for $p$-adic open, closed, and open-closed strings”, Theoret. and Math. Phys., 149:3 (2006), 1604–1616 | DOI | DOI | MR | Zbl
[2] L. V. Joukovskaya, “Iterative method for solving nonlinear integral equations describing rolling solutions in string theory”, Theoret. and Math. Phys., 146:3 (2006), 335–342 | DOI | DOI | MR | Zbl
[3] V. S. Vladimirov, Ya. I. Volovich, “Nonlinear dynamics equation in $p$-adic string theory”, Theoret. and Math. Phys., 138:3 (2004), 297–309 | DOI | DOI | MR | Zbl
[4] L. V. Zhukovskaya, “Energy conservation for $p$-adic and SFT string equations”, Proc. Steklov Inst. Math., 245 (2004), 98–104 | MR | Zbl
[5] O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 1987, no. 6, 109–130 | DOI | MR | Zbl
[6] O. Diekmann, “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Differential Equations, 33:1 (1979), 58–73 | DOI | MR | Zbl
[7] Kh. A. Khachatryan, “On the solubility of certain classes of non-linear integral equations in $p$-adic string theory”, Izv. Math., 82:2 (2018), 407–427 | DOI | DOI | MR | Zbl
[8] Kh. A. Khachatryan, “On the solvability of a boundary value problem in $p$-adic string theory”, Trans. Moscow Math. Soc., 2018, 101–115 | DOI | MR | Zbl
[9] N. K. Karapetyants, “Nelineinoe uravnenie Vinera–Khopfa”, Dep. v VINITI 23.01.85, No 646-85, RZhMat, 1985, 4B686, 47 pp.
[10] N. B. Engibaryan, “On a problem in nonlinear radiative transfer”, Astrophysics, 2:1 (1966), 12–14 | DOI
[11] A. Kh. Khachatryan, Kh. A. Khachatryan, “Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave”, Theoret. and Math. Phys., 189:2 (2016), 1609–1623 | DOI | DOI | MR | Zbl
[12] A. Kh. Khachatryan, Kh. A. Khachatryan, “A uniqueness theorem for a nonlinear singular integral equation arising in $p$-adic string theory”, Uch. zap. EGU. Ser. Fiz. Matem., 53:1 (2019), 17–22 | Zbl
[13] Kh. A. Khachatryan, “O razreshimosti odnoi sistemy nelineinykh integralnykh uravnenii tipa Gammershteina na pryamoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 19:2 (2019), 164–181 | DOI | MR | Zbl
[14] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, N.Y., 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | MR | Zbl | Zbl
[15] G. G. Gevorkyan, N. B. Engibaryan, “New theorems for the renewal integral equation”, J. Contemp. Math. Anal., 32:1 (1997), 2–16 | MR | Zbl