Existence and uniqueness of~solution of~a certain boundary-value problem for a~convolution integral equation with monotone non-linearity
Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 807-815.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence and uniqueness as well as the asymptotic behaviour of solutions of a certain boundary-value problem for a convolution integral equation on the whole line with monotone non-linearity. In some special cases, there are concrete applications to $p$-adic string theory, the mathematical theory of the geographical spread of an epidemic, the kinetic theory of gases and the theory of radiation transfer. We prove \linebreak the existence and uniqueness of an odd bounded continuous solution. The monotonicity and the integral asymptotics of this solution is also discussed. We finally give particular application-oriented examples of the equations considered, which illustrate the special nature of our results.
Keywords: integral equation, iterations, oddness, monotonicity, uniqueness of a solution, limit of a solution.
@article{IM2_2020_84_4_a8,
     author = {Kh. A. Khachatryan},
     title = {Existence and uniqueness of~solution of~a certain boundary-value problem for a~convolution integral equation with monotone non-linearity},
     journal = {Izvestiya. Mathematics },
     pages = {807--815},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a8/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
TI  - Existence and uniqueness of~solution of~a certain boundary-value problem for a~convolution integral equation with monotone non-linearity
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 807
EP  - 815
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a8/
LA  - en
ID  - IM2_2020_84_4_a8
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%T Existence and uniqueness of~solution of~a certain boundary-value problem for a~convolution integral equation with monotone non-linearity
%J Izvestiya. Mathematics 
%D 2020
%P 807-815
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a8/
%G en
%F IM2_2020_84_4_a8
Kh. A. Khachatryan. Existence and uniqueness of~solution of~a certain boundary-value problem for a~convolution integral equation with monotone non-linearity. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 807-815. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a8/

[1] V. S. Vladimirov, “Nonlinear equations for $p$-adic open, closed, and open-closed strings”, Theoret. and Math. Phys., 149:3 (2006), 1604–1616 | DOI | DOI | MR | Zbl

[2] L. V. Joukovskaya, “Iterative method for solving nonlinear integral equations describing rolling solutions in string theory”, Theoret. and Math. Phys., 146:3 (2006), 335–342 | DOI | DOI | MR | Zbl

[3] V. S. Vladimirov, Ya. I. Volovich, “Nonlinear dynamics equation in $p$-adic string theory”, Theoret. and Math. Phys., 138:3 (2004), 297–309 | DOI | DOI | MR | Zbl

[4] L. V. Zhukovskaya, “Energy conservation for $p$-adic and SFT string equations”, Proc. Steklov Inst. Math., 245 (2004), 98–104 | MR | Zbl

[5] O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 1987, no. 6, 109–130 | DOI | MR | Zbl

[6] O. Diekmann, “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Differential Equations, 33:1 (1979), 58–73 | DOI | MR | Zbl

[7] Kh. A. Khachatryan, “On the solubility of certain classes of non-linear integral equations in $p$-adic string theory”, Izv. Math., 82:2 (2018), 407–427 | DOI | DOI | MR | Zbl

[8] Kh. A. Khachatryan, “On the solvability of a boundary value problem in $p$-adic string theory”, Trans. Moscow Math. Soc., 2018, 101–115 | DOI | MR | Zbl

[9] N. K. Karapetyants, “Nelineinoe uravnenie Vinera–Khopfa”, Dep. v VINITI 23.01.85, No 646-85, RZhMat, 1985, 4B686, 47 pp.

[10] N. B. Engibaryan, “On a problem in nonlinear radiative transfer”, Astrophysics, 2:1 (1966), 12–14 | DOI

[11] A. Kh. Khachatryan, Kh. A. Khachatryan, “Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave”, Theoret. and Math. Phys., 189:2 (2016), 1609–1623 | DOI | DOI | MR | Zbl

[12] A. Kh. Khachatryan, Kh. A. Khachatryan, “A uniqueness theorem for a nonlinear singular integral equation arising in $p$-adic string theory”, Uch. zap. EGU. Ser. Fiz. Matem., 53:1 (2019), 17–22 | Zbl

[13] Kh. A. Khachatryan, “O razreshimosti odnoi sistemy nelineinykh integralnykh uravnenii tipa Gammershteina na pryamoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 19:2 (2019), 164–181 | DOI | MR | Zbl

[14] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, N.Y., 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | MR | Zbl | Zbl

[15] G. G. Gevorkyan, N. B. Engibaryan, “New theorems for the renewal integral equation”, J. Contemp. Math. Anal., 32:1 (1997), 2–16 | MR | Zbl