Integer expansion in systems of~translates and dilates of~a single function
Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 796-806.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study expansions with integer coefficients of elements in the multidimensional spaces $L_p\{(0,1]^m\}$, $1\leq p\infty$, in systems of translates and dilates of a single function. We describe models useful in applications, including those in multimodular spaces. The proposed approximation of elements in $L_p\{(0,1]^m\}$, $1\leq p \infty$, has the property of image compression, that is, there are many zero coefficients in this expansion. The study may also be of interest to specialists in the transmission and processing of digital information since we find a simple algorithm for approximating in $L_p\{(0,1]^m\}$, $1 \leq p \infty$, having this property.
Keywords: functional systems of translates and dilates of a single function in the multidimensional spaces $ L_p \{ (0,1]^m \}$, $1 \leq p < \infty$, multidimensional Fourier-type series, multidimensional Fourier-type series with integer coefficients, digital information processing, digital information transfer, integer expansions of functions.
@article{IM2_2020_84_4_a7,
     author = {V. I. Filippov},
     title = {Integer expansion in systems of~translates and dilates of~a single function},
     journal = {Izvestiya. Mathematics },
     pages = {796--806},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a7/}
}
TY  - JOUR
AU  - V. I. Filippov
TI  - Integer expansion in systems of~translates and dilates of~a single function
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 796
EP  - 806
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a7/
LA  - en
ID  - IM2_2020_84_4_a7
ER  - 
%0 Journal Article
%A V. I. Filippov
%T Integer expansion in systems of~translates and dilates of~a single function
%J Izvestiya. Mathematics 
%D 2020
%P 796-806
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a7/
%G en
%F IM2_2020_84_4_a7
V. I. Filippov. Integer expansion in systems of~translates and dilates of~a single function. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 796-806. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a7/

[1] V. I. Filippov, P. Oswald, “Representation in $L^p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl

[2] V. I. Filippov, “On subsystems of the Faber–Schauder system in functional spaces”, Soviet Math. (Iz. VUZ), 35:2 (1991), 90–97 | MR | Zbl

[3] V. I. Filippov, “Function systems obtained using translates and dilates of a single function in the spaces $E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$”, Izv. Math., 65:2 (2001), 389–402 | DOI | DOI | MR | Zbl

[4] V. I. Filippov, “Representation systems obtained using translates and dilates of a single function in multidimensional spaces $E_{\varphi}$”, Izv. Math., 76:6 (2012), 1257–1270 | DOI | DOI | MR | Zbl

[5] V. I. Filippov, “On generalization of Haar system and other function systems in spaces $E_{\varphi}$”, Russian Math. (Iz. VUZ), 62:1 (2018), 76–81 | DOI | MR | Zbl

[6] V. I. Filippov, “Multimodular spaces and their properties”, Russian Math. (Iz. VUZ), 61:12 (2017), 49–56 | DOI | MR | Zbl

[7] P. A. Borodin, S. V. Konyagin, “Convergence to zero of exponential sums with positive integer coefficients and approximation by sums of shifts of a single function on the line”, Anal. Math., 44:2 (2018), 163–183 | DOI | MR | Zbl

[8] T. P. Lukashenko, V. A. Sadovnichii, “Orthorecursive expansions with respect to subspaces”, Dokl. Math., 86:1 (2012), 472–475 | DOI | MR | Zbl

[9] A. Yu. Kudryavtsev, “On the convergence of orthorecursive expansions in nonorthogonal wavelets”, Math. Notes, 92:5 (2012), 643–656 | DOI | DOI | MR | Zbl

[10] B. I. Golubov, “O suschestvovanii bazisov iz sdvigov funktsii v odnorodnykh prostranstvakh”, Zbirnik prats In-tu matem. NAN Ukraini, 5:1 (2008), 104–112 | Zbl