Functions of perturbed pairs of non-commuting contractions
Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 659-682.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider functions $f(T,R)$ of pairs of noncommuting contractions on Hilbert space and study the problem as to which functions $f$ we have Lipschitz type estimates in Schatten–von Neumann norms. We prove that if $f$ belongs to the Besov class $(B_{\infty,1}^1)_+(\mathbb{T}^2)$ of analytic functions in the bidisc, then we have a Lipschitz type estimate for functions $f(T,R)$ of pairs of not necessarily commuting contractions $(T,R)$ in the Schatten–von Neumann norms $\mathbf{S}_p$ for $p\in[1,2]$. On the other hand, we show that for functions in $(B_{\infty,1}^1)_+(\mathbb{T}^2)$, there are no such Lipschitz type estimates for $p>2$, nor in the operator norm.
Keywords: semi-spectral measures, Schatten–von Neumann classes, double operator integrals, triple operator integrals, Haagerup tensor products, Haagerup-like tensor products
Mots-clés : contractions, perturbation, Besov classes.
@article{IM2_2020_84_4_a2,
     author = {A. B. Aleksandrov and V. V. Peller},
     title = {Functions of perturbed pairs of non-commuting contractions},
     journal = {Izvestiya. Mathematics },
     pages = {659--682},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a2/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
AU  - V. V. Peller
TI  - Functions of perturbed pairs of non-commuting contractions
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 659
EP  - 682
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a2/
LA  - en
ID  - IM2_2020_84_4_a2
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%A V. V. Peller
%T Functions of perturbed pairs of non-commuting contractions
%J Izvestiya. Mathematics 
%D 2020
%P 659-682
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a2/
%G en
%F IM2_2020_84_4_a2
A. B. Aleksandrov; V. V. Peller. Functions of perturbed pairs of non-commuting contractions. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 659-682. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a2/

[1] V. V. Peller, “Hankel operators in the perturbation theory of unitary and self-adjoint operators”, Funct. Anal. Appl., 19:2 (1985), 111–123 | DOI | MR | Zbl

[2] V. V. Peller, “For which $f$ does $A-B\in \mathbf{S}_{p}$ imply that $f(A)-f(B)\in \mathbf{S}_{p}$?”, Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985), Oper. Theory Adv. Appl., 24, Birkhäuser, Basel, 1987, 289–294 | MR | Zbl

[3] V. V. Peller, “Hankel operators in the perturbation theory of unbounded self-adjoint operators”, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., 122, Dekker, New York, 1990, 529–544 | MR | Zbl

[4] V. V. Peller, Hankel operators and their applications, Springer Monogr. Math., Springer-Verlag, New York, 2003, xvi+784 pp. | DOI | MR | Zbl

[5] V. V. Peller, “Multiple operator integrals and higher operator derivatives”, J. Funct. Anal., 233:2 (2006), 515–544 | DOI | MR | Zbl

[6] V. V. Peller, “Differentiability of functions of contractions”, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Adv. Math. Sci., 63, Amer. Math. Soc., Providence, RI, 2009, 109–131 | DOI | MR | Zbl

[7] V. V. Peller, “Multiple operator integrals in perturbation theory”, Bull. Math. Sci., 6:1 (2016), 15–88 | DOI | MR | Zbl

[8] V. V. Peller, “Functions of triples of noncommuting self-adjoint operators under perturbations of class $S_p$”, Proc. Amer. Math. Soc., 146:4 (2018), 1699–1711 | DOI | MR | Zbl

[9] A. B. Aleksandrov, V. V. Peller, “Operator Hölder–Zygmund functions”, Adv. Math., 224:3 (2010), 910–966 | DOI | MR | Zbl

[10] A. B. Aleksandrov, V. V. Peller, “Functions of operators under perturbations of class $\mathbf{S}_p$”, J. Funct. Anal., 258:11 (2010), 3675–3724 | DOI | MR | Zbl

[11] A. B. Aleksandrov, V. V. Peller, “Functions of perturbed dissipative operators”, St. Petersburg Math. J., 23:2 (2012), 209–238 | DOI | MR | Zbl

[12] A. B. Aleksandrov, V. V. Peller, “Operator Lipschitz functions”, Russian Math. Surveys, 71:4 (2016), 605–702 | DOI | DOI | MR | Zbl

[13] A. B. Aleksandrov, V. V. Peller, “Dissipative operators and operator Lipschitz functions”, Proc. Amer. Math. Soc., 147:5 (2019), 2081–2093 | DOI | MR | Zbl

[14] A. B. Aleksandrov, V. V. Peller, D. S. Potapov, F. A. Sukochev, “Functions of normal operators under perturbations”, Adv. Math., 226:6 (2011), 5216–5251 | DOI | MR | Zbl

[15] F. L. Nazarov, V. V. Peller, “Functions of perturbed $n$-tuples of commuting self-adjoint operators”, J. Funct. Anal., 266:8 (2014), 5398–5428 | DOI | MR | Zbl

[16] A. B. Aleksandrov, F. L. Nazarov, V. V. Peller, “Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals”, Adv. Math., 295 (2016), 1–52 | DOI | MR | Zbl

[17] D. Potapov, F. Sukochev, “Operator-Lipschitz functions in Schatten–von Neumann classes”, Acta Math., 207:2 (2011), 375–389 | DOI | MR | Zbl

[18] E. Kissin, D. Potapov, V. Shulman, F. Sukochev, “Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations”, Proc. Lond. Math. Soc. (3), 105:4 (2012), 661–702 | DOI | MR | Zbl

[19] Yu. B. Farforovskaya, “O svyazi metriki Kantorovicha–Rubinshteina dlya spektralnykh razlozhenii samosopryazhennykh operatorov s funktsiyami ot operatorov”, Vestn. LGU. Ser. matem., mekh., astron., 23:19 (1968), 94–97 | MR | Zbl

[20] J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Ser., 1, Math. Department, Duke Univ., Durham, NC, 1976, vi+305 pp. | MR | Zbl

[21] L. N. Nikol'skaya, Yu. B. Farforovskaya, “Hölder functions are operator-Hölder”, St. Petersburg Math. J., 22:4 (2011), 657–668 | DOI | MR | Zbl

[22] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl

[23] Yu. L. Daletskii, S. G. Krein, “Integrirovanie i differentsirovanie funktsii ermitovykh operatorov i prilozheniya k teorii vozmuschenii”, Tr. sem. po funkts. analizu, 1, VGU, Voronezh, 1956, 81–105 | Zbl

[24] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa”, Spektralnaya teoriya i volnovye protsescy, Probl. matem. fiz., 1, LGU, L., 1966, 33–67 | MR | Zbl

[25] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa. II”, Spektralnaya teoriya, problemy difraktsii, Probl. matem. fiz., 2, LGU, L., 1967, 26–60 | MR | Zbl

[26] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa. III. Predelnyi perekhod pod znakom integrala”, Teoriya funktsii. Spektralnaya teoriya. Rasprostranenie voln, Probl. matem. fiz., 6, LGU, L., 1973, 27–53 | MR | Zbl

[27] G. Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Ser., 294, Cambridge Univ. Press, Cambridge, 2003, viii+478 pp. | DOI | MR | Zbl

[28] B. Sz.-Nagy, C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Akadémiaí Kiadó, Budapest; Masson et Cie, Paris, 1967, xi+373 pp. | MR | MR | Zbl | Zbl

[29] K. Juschenko, I. G. Todorov, L. Turowska, “Multidimensional operator multipliers”, Trans. Amer. Math. Soc., 361:9 (2009), 4683–4720 | DOI | MR | Zbl

[30] A. B. Aleksandrov, V. V. Peller, “Multiple operator integrals, Haagerup and Haagerup-like tensor products, and operator ideals”, Bull. Lond. Math. Soc., 49:3 (2017), 463–479 | DOI | MR | Zbl

[31] V. V. Peller, “Functions of commuting contractions under perturbation”, Math. Nachr., 292:5 (2019), 1151–1160 | DOI | MR | Zbl