Asymptotics of~approximation of~continuous periodic functions by linear means of~their Fourier series
Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 608-624.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an asymptotic formula for the rate of approximation of Fourier series of individual periodic functions by linear averages with an error $\omega_{2m}(f;{1}/{n})$, $m\in\mathbb{N}$. This formula is applicable to the means of Riesz, Gauss–Weierstrass, Picard and others. The result is new even for the arithmetic means of partial Fourier sums. We use the formula to determine the asymptotic behaviour of functions in a certain class. Separately, we consider the case of positive integral convolution operators.
Keywords: Fourier series, Wiener algebra of Fourier transforms, comparison principle, modulus of smoothness $\omega_m(f;h)$, positive definite functions, Bernstein's and Schoenberg's theorems.
@article{IM2_2020_84_3_a5,
     author = {R. M. Trigub},
     title = {Asymptotics of~approximation of~continuous periodic functions by linear means of~their {Fourier} series},
     journal = {Izvestiya. Mathematics },
     pages = {608--624},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a5/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - Asymptotics of~approximation of~continuous periodic functions by linear means of~their Fourier series
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 608
EP  - 624
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a5/
LA  - en
ID  - IM2_2020_84_3_a5
ER  - 
%0 Journal Article
%A R. M. Trigub
%T Asymptotics of~approximation of~continuous periodic functions by linear means of~their Fourier series
%J Izvestiya. Mathematics 
%D 2020
%P 608-624
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a5/
%G en
%F IM2_2020_84_3_a5
R. M. Trigub. Asymptotics of~approximation of~continuous periodic functions by linear means of~their Fourier series. Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 608-624. http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a5/

[1] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, N.J., 1971, x+297 pp. | MR | Zbl | Zbl

[2] A. F. Timan, Theory of approximation of functions of a real variable, Internat. Ser. Monogr. Pure Appl. Math., 34, A Pergamon Press Book The Macmillan Co., New York, 1963, xii+631 pp. | MR | MR | Zbl

[3] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 511 pp. | MR | Zbl

[4] R. M. Trigub, “Exact order of approximation of periodic functions by linear polynomial operators”, East J. Approx., 15:1 (2009), 25–50 | MR | Zbl

[5] E. Liflyand, S. Samko, R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: an overview”, Anal. Math. Phys., 2:1 (2012), 1–68 | DOI | MR | Zbl

[6] R. M. Trigub, E. S. Bellinsky, Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht, 2004, xiv+585 pp. | DOI | MR | Zbl

[7] S. N. Bernshtein, Sobranie sochinenii, v. 1, Izd-vo AN SSSR, M., 1952, 581 pp. | MR | Zbl

[8] M. Ganzburg, “Exact errors of best approximation for complex-valued nonperiodic functions”, J. Approx. Theory, 229 (2018), 1–12 | DOI | MR | Zbl

[9] V. P. Zastavnyi, V. V. Savchuk, “Approximation of classes of convolutions by linear operators of special form”, Math. Notes, 90:3 (2011), 333–343 | DOI | DOI | MR | Zbl

[10] A. I. Stepanets, Classification and approximation of periodic functions, Math. Appl., 333, Kluwer Acad. Publ., Dordrecht, 1995, x+360 pp. | DOI | MR | MR | Zbl | Zbl

[11] S. A. Telyakovskii, “O priblizhenii funktsii dannogo klassa summami Fure”, Teoriya funktsii i priblizhenii, Trudy III Saratovskoi zimnei shkoly (Saratov, 1986), v. I, Izd-vo Saratovskogo un-ta, Saratov, 1987, 67–75 | MR | Zbl

[12] R. M. Trigub, “Multipliers of Fourier series and approximation of functions by polynomials in the spaces $C$ and $L$”, Soviet Math. Dokl., 39:3 (1989), 494–498 | MR | Zbl

[13] A. M. Shvetsova, “Priblizhenie chastnymi summami Fure i nailuchshee priblizhenie nekotorykh klassov funktsii”, Anal. Math., 27 (2001), 201–222 | DOI | MR | Zbl

[14] R. M. Trigub, “Constructive characterizations of some function classes”, Amer. Math. Soc. Transl. Ser. 2, 86, Amer. Math. Soc., Providence, R.I., 1970, 31–50 | DOI | MR | Zbl

[15] O. I. Kuznetsova, R. M. Trigub, “Two-sided estimates of the approximation of functions by Riesz and Marcinkiewicz means”, Soviet Math. Dokl., 21 (1980), 374–377 | MR | Zbl

[16] R. M. Trigub, “A generalization of the Euler–Maclaurin formula”, Math. Notes, 61:2 (1997), 253–257 | DOI | DOI | MR | Zbl

[17] R. M. Trigub, “Summability of trigonometric Fourier series at $d$-points and a generalization of the Abel–Poisson method”, Izv. Math., 79:4 (2015), 838–858 | DOI | DOI | MR | Zbl

[18] R. M. Trigub, “Absolute convergence of Fourier integrals, summability of Fourier series, and polynomial approximation of functions on the torus”, Math. USSR-Izv., 17:3 (1981), 567–593 | DOI | MR | Zbl

[19] R. M. Trigub, “Almost everywhere summability of Fourier series with indication of the set of convergence”, Math. Notes, 100:1 (2016), 139–153 | DOI | DOI | MR | Zbl

[20] E. Liflyand, R. Trigub, “Conditions for the absolute convergence of Fourier integrals”, J. Approx. Theory, 163:4 (2011), 438–459 | DOI | MR | Zbl

[21] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 4th ed., Academic Press, New York–London, 1965, xlv+1086 pp. | MR | MR | Zbl | Zbl

[22] R. M. Trigub, “On Fourier multipliers and absolute convergence of Fourier integrals of radial functions”, Ukrainian Math. J., 62:9 (2010), 1487–1501 | DOI | MR | Zbl

[23] I. J. Schoenberg, “Metric spaces and completely monotone functions”, Ann. of Math. (2), 39:4 (1938), 811–841 | DOI | MR | Zbl

[24] V. P. Zastavnyi, A. D. Manov, “On the positive definiteness of some functions related to the Schoenberg problem”, Math. Notes, 102:3 (2017), 325–337 | DOI | DOI | MR | Zbl