Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_3_a5, author = {R. M. Trigub}, title = {Asymptotics of~approximation of~continuous periodic functions by linear means of~their {Fourier} series}, journal = {Izvestiya. Mathematics }, pages = {608--624}, publisher = {mathdoc}, volume = {84}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a5/} }
TY - JOUR AU - R. M. Trigub TI - Asymptotics of~approximation of~continuous periodic functions by linear means of~their Fourier series JO - Izvestiya. Mathematics PY - 2020 SP - 608 EP - 624 VL - 84 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a5/ LA - en ID - IM2_2020_84_3_a5 ER -
R. M. Trigub. Asymptotics of~approximation of~continuous periodic functions by linear means of~their Fourier series. Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 608-624. http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a5/
[1] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, N.J., 1971, x+297 pp. | MR | Zbl | Zbl
[2] A. F. Timan, Theory of approximation of functions of a real variable, Internat. Ser. Monogr. Pure Appl. Math., 34, A Pergamon Press Book The Macmillan Co., New York, 1963, xii+631 pp. | MR | MR | Zbl
[3] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 511 pp. | MR | Zbl
[4] R. M. Trigub, “Exact order of approximation of periodic functions by linear polynomial operators”, East J. Approx., 15:1 (2009), 25–50 | MR | Zbl
[5] E. Liflyand, S. Samko, R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: an overview”, Anal. Math. Phys., 2:1 (2012), 1–68 | DOI | MR | Zbl
[6] R. M. Trigub, E. S. Bellinsky, Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht, 2004, xiv+585 pp. | DOI | MR | Zbl
[7] S. N. Bernshtein, Sobranie sochinenii, v. 1, Izd-vo AN SSSR, M., 1952, 581 pp. | MR | Zbl
[8] M. Ganzburg, “Exact errors of best approximation for complex-valued nonperiodic functions”, J. Approx. Theory, 229 (2018), 1–12 | DOI | MR | Zbl
[9] V. P. Zastavnyi, V. V. Savchuk, “Approximation of classes of convolutions by linear operators of special form”, Math. Notes, 90:3 (2011), 333–343 | DOI | DOI | MR | Zbl
[10] A. I. Stepanets, Classification and approximation of periodic functions, Math. Appl., 333, Kluwer Acad. Publ., Dordrecht, 1995, x+360 pp. | DOI | MR | MR | Zbl | Zbl
[11] S. A. Telyakovskii, “O priblizhenii funktsii dannogo klassa summami Fure”, Teoriya funktsii i priblizhenii, Trudy III Saratovskoi zimnei shkoly (Saratov, 1986), v. I, Izd-vo Saratovskogo un-ta, Saratov, 1987, 67–75 | MR | Zbl
[12] R. M. Trigub, “Multipliers of Fourier series and approximation of functions by polynomials in the spaces $C$ and $L$”, Soviet Math. Dokl., 39:3 (1989), 494–498 | MR | Zbl
[13] A. M. Shvetsova, “Priblizhenie chastnymi summami Fure i nailuchshee priblizhenie nekotorykh klassov funktsii”, Anal. Math., 27 (2001), 201–222 | DOI | MR | Zbl
[14] R. M. Trigub, “Constructive characterizations of some function classes”, Amer. Math. Soc. Transl. Ser. 2, 86, Amer. Math. Soc., Providence, R.I., 1970, 31–50 | DOI | MR | Zbl
[15] O. I. Kuznetsova, R. M. Trigub, “Two-sided estimates of the approximation of functions by Riesz and Marcinkiewicz means”, Soviet Math. Dokl., 21 (1980), 374–377 | MR | Zbl
[16] R. M. Trigub, “A generalization of the Euler–Maclaurin formula”, Math. Notes, 61:2 (1997), 253–257 | DOI | DOI | MR | Zbl
[17] R. M. Trigub, “Summability of trigonometric Fourier series at $d$-points and a generalization of the Abel–Poisson method”, Izv. Math., 79:4 (2015), 838–858 | DOI | DOI | MR | Zbl
[18] R. M. Trigub, “Absolute convergence of Fourier integrals, summability of Fourier series, and polynomial approximation of functions on the torus”, Math. USSR-Izv., 17:3 (1981), 567–593 | DOI | MR | Zbl
[19] R. M. Trigub, “Almost everywhere summability of Fourier series with indication of the set of convergence”, Math. Notes, 100:1 (2016), 139–153 | DOI | DOI | MR | Zbl
[20] E. Liflyand, R. Trigub, “Conditions for the absolute convergence of Fourier integrals”, J. Approx. Theory, 163:4 (2011), 438–459 | DOI | MR | Zbl
[21] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 4th ed., Academic Press, New York–London, 1965, xlv+1086 pp. | MR | MR | Zbl | Zbl
[22] R. M. Trigub, “On Fourier multipliers and absolute convergence of Fourier integrals of radial functions”, Ukrainian Math. J., 62:9 (2010), 1487–1501 | DOI | MR | Zbl
[23] I. J. Schoenberg, “Metric spaces and completely monotone functions”, Ann. of Math. (2), 39:4 (1938), 811–841 | DOI | MR | Zbl
[24] V. P. Zastavnyi, A. D. Manov, “On the positive definiteness of some functions related to the Schoenberg problem”, Math. Notes, 102:3 (2017), 325–337 | DOI | DOI | MR | Zbl