Some trigonometric polynomials with extremely small uniform norm and their applications
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 361-391.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct orthogonal trigonometric polynomials satisfying a new spectral condition and such that their $L^{1}$-norms are bounded below and the uniform norm of their partial sums has extremely small order of growth. We obtain new results that relate the uniform norm and $\mathrm{QC}$-norm on subspaces of the vector space of trigonometric polynomials.
Keywords: trigonometric polynomial, Rademacher system.
Mots-clés : Fejér kernel
@article{IM2_2020_84_2_a6,
     author = {A. O. Radomskii},
     title = {Some trigonometric polynomials with extremely small uniform norm and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {361--391},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a6/}
}
TY  - JOUR
AU  - A. O. Radomskii
TI  - Some trigonometric polynomials with extremely small uniform norm and their applications
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 361
EP  - 391
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a6/
LA  - en
ID  - IM2_2020_84_2_a6
ER  - 
%0 Journal Article
%A A. O. Radomskii
%T Some trigonometric polynomials with extremely small uniform norm and their applications
%J Izvestiya. Mathematics 
%D 2020
%P 361-391
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a6/
%G en
%F IM2_2020_84_2_a6
A. O. Radomskii. Some trigonometric polynomials with extremely small uniform norm and their applications. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 361-391. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a6/

[1] P. G. Grigor'ev, A. O. Radomskii, “Some trigonometric polynomials with extremally small uniform norm”, Math. Notes, 98:2 (2015), 230–236 | DOI | DOI | MR | Zbl

[2] P. G. Grigor'ev, “On a sequence of trigonometric polynomials”, Math. Notes, 61:6 (1997), 780–783 | DOI | DOI | MR | Zbl

[3] A. O. Radomskii, “On the possibility of strengthening Sidon-type inequalities”, Math. Notes, 94:5 (2013), 829–833 | DOI | DOI | MR | Zbl

[4] R. A. Hunt, “On the convergence of Fourier series”, Orthogonal expansions and their continuous analogues (Edwardsville, IL, 1967), Southern Illinois Univ. Press, Carbondale, IL, 1968, 235–255 | MR | Zbl

[5] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp., vii+354 pp. | MR | MR | Zbl | Zbl

[6] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[7] B. S. Kashin, V. N. Temlyakov, “On a certain norm and related applications”, Math. Notes, 64:4 (1998), 551–554 | DOI | DOI | MR | Zbl

[8] B. S. Kashin, V. N. Temlyakov, “Ob odnoi norme i approksimatsionnykh kharakteristikakh klassov funktsii mnogikh peremennykh”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Sbornik statei, AFTs, M., 1999, 69–99 | MR | Zbl

[9] A. O. Radomskii, “QC-norm of trigonometric polynomials of special form”, Moscow Univ. Math. Bull., 70:2 (2015), 84–87 | DOI | MR | Zbl

[10] A. O. Radomskii, “On nonequivalence of the $\mathrm{C}$- and $\mathrm{QC}$-norms in the space of trigonometric polynomials”, Sb. Math., 207:12 (2016), 1729–1742 | DOI | DOI | MR | Zbl

[11] A. O. Radomskii, “Some properties of the space of quasi-continuous functions”, Russian Math. Surveys, 73:6 (2018), 1119–1121 | DOI | DOI | MR | Zbl

[12] V. N. Temlyakov, Approximation of periodic functions, Comput. Math. Anal. Ser., Nova Sci. Publ., Commack, NY, 1993, x+419 pp. | MR | Zbl

[13] B. S. Kashin, “On certain properties of the space of trigonometric polynomials with uniform norm”, Proc. Steklov Inst. Math., 145 (1981), 121–127 | MR | Zbl