Some trigonometric polynomials with extremely small uniform norm and their applications
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 361-391

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct orthogonal trigonometric polynomials satisfying a new spectral condition and such that their $L^{1}$-norms are bounded below and the uniform norm of their partial sums has extremely small order of growth. We obtain new results that relate the uniform norm and $\mathrm{QC}$-norm on subspaces of the vector space of trigonometric polynomials.
Keywords: trigonometric polynomial, Rademacher system.
Mots-clés : Fejér kernel
@article{IM2_2020_84_2_a6,
     author = {A. O. Radomskii},
     title = {Some trigonometric polynomials with extremely small uniform norm and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {361--391},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a6/}
}
TY  - JOUR
AU  - A. O. Radomskii
TI  - Some trigonometric polynomials with extremely small uniform norm and their applications
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 361
EP  - 391
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a6/
LA  - en
ID  - IM2_2020_84_2_a6
ER  - 
%0 Journal Article
%A A. O. Radomskii
%T Some trigonometric polynomials with extremely small uniform norm and their applications
%J Izvestiya. Mathematics 
%D 2020
%P 361-391
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a6/
%G en
%F IM2_2020_84_2_a6
A. O. Radomskii. Some trigonometric polynomials with extremely small uniform norm and their applications. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 361-391. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a6/